[1]涂健,阮苑,蔡伟真,等.RyhB-cysE基因对禽致病性大肠杆菌生物表型的影响[J].江苏农业学报,2020,(05):1247-1254.[doi:doi:10.3969/j.issn.1000-4440.2020.05.023]
 TU Jian,RUAN Yuan,CAI Wei-zhen,et al.Effects of RyhB-cysE gene on biological characteristics of avian pathogenic Escherichia coli[J].,2020,(05):1247-1254.[doi:doi:10.3969/j.issn.1000-4440.2020.05.023]
点击复制

RyhB-cysE基因对禽致病性大肠杆菌生物表型的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1247-1254
栏目:
畜牧兽医·水产养殖
出版日期:
2020-10-31

文章信息/Info

Title:
Effects of RyhB-cysE gene on biological characteristics of avian pathogenic Escherichia coli
作者:
涂健阮苑蔡伟真宋祥军邵 颖祁克宗
(安徽农业大学兽医病理生物学与疫病防控安徽省重点实验室,安徽合肥230036)
Author(s):
TU JianRUAN YuanCAI Wei-zhenSONG Xiang-junSHAO YingQI Ke-zong
(Key Laboratory of Veterinary Pathology and Disease Control and Prevention of Anhui Province, Anhui Agricultural University, Hefei 230036, China)
关键词:
禽致病性大肠杆菌RyhB基因cysE基因生物被膜运动性
Keywords:
avian pathogenic Escherichia coliRyhB genecysE genebiofilmmotility
分类号:
S851.3
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.023
文献标志码:
A
摘要:
在禽致病性大肠杆菌(APEC)AE17及AE17△RyhB的基础上利用Red同源重组技术构建基因缺失株AE17△cysE、AE17△RyhB△cysE, 对野生株和基因缺失株的生长、生物被膜形成和运动特性进行分析,并采用qRT-PCR技术比较野生株和缺失株中与运动性、生物被膜形成相关基因的转录水平。结果显示,各菌株生长曲线无显著差异;AE17△RyhB、AE17△cysE、AE17△RyhB△cysE生物被膜形成能力较AE17显著下降;AE17△cysE 、AE17△RyhB△cysE运动能力与AE17相比下降;AE17△cysE、AE17△RyhB△cysE与AE17相比flhB 、flgD、fliF和 cheY转录水平均降低,而AE17△RyhB△cysE与AE17△cysE相比基因转录水平均有所增强;AE17△RyhB、AE17△cysE、AE17△RyhB△cysE与AE17相比,flhD 、flgC、sidA转录水平均显著降低。表明cysE基因缺失降低了APEC生物被膜形成能力及运动能力,且RyhB基因缺失对cysE基因的运动能力调控作用有代偿作用,RyhB、cysE基因均通过调节与生物被膜形成相关的基因(flhD 、flgC、sidA)转录水平调控APEC生物被膜形成能力,本研究结果为研究RyhB-cysE基因对APEC的调控作用奠定了基础。
Abstract:
Based on avian pathogenic Escherichia coli (APEC) AE17 and AE17△RyhB, gene-deleted strains AE17△cysE and AE17△RyhB△cysE were constructed using Red homologous recombination technology. The growth, biofilm formation and motion characteristics of wild and gene-deleted strains were analyzeds and qRT-PCR technology was used to compare the transcription levels of genes related to motility and biofilm formation in wild and gene-deleted strains. The results showed that there was no significant difference in the growth curve of each strain. The biofilm formation ability of AE17△RyhB, AE17△cysE, AE17△RyhB△cysE was significantly lower than that of AE17. Compared with AE17, the transcription levels of flhB, flgD, fliF and cheY in AE17△cysE and AE17△RyhB△cysE were reduced, while AE17△RyhB△cysE had enhanced gene transcription levels compared with AE17△cysE. The AE17△RyhB, AE17△cysE, AE17△RyhB△cysE and AE17 flhD, flgC and sidA were significantly reduced. The results indicated that the deletion of cysE gene reduced the ability of APEC biofilm formation and exercise, and RyhB gene had a compensatory effect on the regulation of cysE gene’s exercise capacity. RyhB and cysE genes regulated the biofilm formation ability of APEC by regulating transcription level of genes(flhD, flgC and sidA) related to biofilm formation. These results of this study lay a foundation for studying the regulatory effect of RyhB-cysE gene on APEC.

参考文献/References:

[1]JOHNSON T J, WANNEMUEHLER Y, KARIYAWASAM S, et al. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates[J]. J Bacteriol, 2012, 194(11): 2846-2853.
[2]张煜. 非编码小RNA(RyhB)调控禽致病性大肠杆菌生物学表型分析及靶蛋白的筛选[D]. 合肥:安徽农业大学, 2017.
[3]NAKAMORI S, KOBAYASHI S, KOBAYASHI C, et al. Overproduction of l-Cysteine and l-Cystine by Escherichia coli Strains with a Genetically Altered Serine Acetyltransferase[J]. Appl Environ Microb,1998,64(5): 1607-1611.
[4]尹磊,祁克宗,涂健,等. 非编码小RNA(RyhB)调控禽致病性大肠杆菌毒力相关基因的分析[J]. 畜牧兽医学报, 2015, 46(8): 1409-1416.
[5]DATSENKO K A . One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci USA, 2000, 97(12):6640-6645.
[6]王栋,王少辉,孟庆美,等. 禽致病性大肠杆菌Ⅵ型分泌系统2 evfC 基因缺失株的构建及其生物学特性分析[J]. 中国动物传染病学报, 2016, 24(3): 21-26.
[7]NI B, GHOSH B, PALDY F S, COLIN R, et al. Evolutionary remodeling of bacterial motility checkpoint control[J]. Cell Rep, 2017, 18(4): 866–877.
[8]O′NEILL J, ROUJEINIKOVA A. Cloning, purification and crystallization of MotB, a stator component of the proton-driven bacterial flagellar motor[J]. Acta Crystallogr F, 2008, 64(6): 561-563.
[9] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3(6): 1101-1108.
[10]张 谦,刘一尘,徐进,等. 加味白头翁散发酵产物对肉仔鸡大肠杆菌病的防治效果及对其肠道菌群的影响[J].江苏农业科学,2018,46(21):177-180.
[11]李军,冯世文,曾芸,等. 大肠杆菌O157∶H7氟苯尼考耐药菌株与敏感菌株的蛋白组学差异[J].南方农业学报,2019,50(4):875-882.
[12]毕志香,朱亚露,赵阳,等. 山东省某地区肉鸡H9亚型禽流感与大肠杆菌混合感染的诊治[J].江苏农业科学,2018,46(3):163-165.
[13]HIBY N, BJARNSHOLT T, GIVSKOV M, et al. Antibiotic resistance of bacterial biofilms[J]. Int J Antimicro Agents, 2010, 35(4): 322-332.
[14]COSTERTON J W, STEWART P S, GREENBERG E P. Bacterial biofilms: a common cause of persistent infections[J]. Science, 1999, 284(5418): 1318-1322.
[15]WOOD T K, GONZLEZ BARRIOS A F, HERZBERG M, et al. Motility influences biofilm architecture in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 361-367.
[16]HAIKO J, WESTERLUND-WIKSTRM Z B. The role of the bacterial flagellum in adhesion and virulence[J]. Biol, 2013, 2(4): 1242-1267.
[17]SHELLEY M H, JOSEPH S, NICHOLAS S, et al. Spontaneous mutations in the flhD operon generate motility heterogeneity in Escherichia coli biofilm[J]. BioMed Central, 2016, 16(1):1-13.
[18]HEBERT C, SAMUEL C, JULIANA H, et al. Role of SdiA on Biofilm Formation by Atypical Enteropathogenic Escherichia coli[J]. Pubmed, 2018, 9(5): 253.
[19]MINAMINO T, INOUE Y, KINOSHITA Miki, et al. FliK-Driven conformational rearrangements of FlhA and FlhB are required for export switching of the flagellar protein export apparatus[J]. Pubmed, 2020, 202(3): e00637.
[20]QUAX TESSA E F, ALTEGORR F, ROSSI F, et al. Structure and function of the archaeal response regulator CheY[J]. Proc Natl Acad Sci USA, 2018, 115(6): 1259-1268.
[21]LAM K H, CHAOLUN X, KAILEI S, et al. Three SpoA-domain proteins interact in the creation of the flagellar type III secretion system in Helicobacter pylori[J]. J Biol Chem, 2018, 293(36): 13961-13973.
[22]田延,丁雪燕,岑雪,等. 大肠杆菌鞭毛研究进展[J]. 中国预防兽医学报, 2019, 41(6): 649-653.

相似文献/References:

[1]宋祥军,程悦,邱明宇,等.禽致病性大肠杆菌phoP/Q基因缺失对雏鸡脾脏microRNAs功能的影响[J].江苏农业学报,2019,(05):1167.[doi:doi:10.3969/j.issn.1000-4440.2019.05.024]
 SONG Xiang-jun,CHENG Yue,QIU Ming-yu,et al.Effect of avian pathogenic Escherichia coli phoP/Q gene mutation on microRNAs function in chicken spleen[J].,2019,(05):1167.[doi:doi:10.3969/j.issn.1000-4440.2019.05.024]
[2]何琪,孙晨晨,侯曼曼,等.禽致病性大肠杆菌hcp2a基因对雏鸡脾脏细胞因子-细胞因子受体相互作用通路的影响[J].江苏农业学报,2022,38(01):151.[doi:doi:10.3969/j.issn.1000-4440.2022.01.018]
 HE Qi,SUN Chen-chen,HOU Man-man,et al.Effects of avian pathogenic Escherichia coli (APEC) hcp2a gene on the cytokine-cytokine receptor interaction pathway in chick spleen[J].,2022,38(05):151.[doi:doi:10.3969/j.issn.1000-4440.2022.01.018]
[3]吴剑梅,傅丹丹,李佳璇,等.ETT2转录因子EivF调控禽致病性大肠杆菌运动性和环境胁迫耐受性[J].江苏农业学报,2022,38(02):438.[doi:doi:10.3969/j.issn.1000-4440.2022.02.018]
 WU Jian-mei,FU Dan-dan,LI Jia-xuan,et al.Regulation of ETT2 transcription factor EivF on avian pathogenic Escherichia coli motility and tolerance to environmental stress[J].,2022,38(05):438.[doi:doi:10.3969/j.issn.1000-4440.2022.02.018]

备注/Memo

备注/Memo:
收稿日期:2020-03-07基金项目:国家自然科学基金青年科学基金项目(31502038); 国家自然科学基金面上项目(31972644)作者简介:涂健(1980-),男,汉族,安徽安庆人,博士,副教授,主要从事动物疫病病理及生物防治等研究。(E-mail)tujian1980@126.com通讯作者:祁克宗,(E-mail)qkz@ahau.edu.cn
更新日期/Last Update: 2020-11-16