参考文献/References:
[1]GOTHWAL R, SHASHIDHAR T. Antibiotic pollution in the environment: a review[J]. Clean-Soil, Air, Water,2015,43(4):479-489.
[2]LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China[J].Environment International,2013,59(3):208-224.
[3]王敏,唐景春. 土壤中的抗生素污染及其生态毒性研究进展[J].农业环境科学学报,2010,29(S1):261-266.
[4]李彦文,莫测辉,赵娜,等. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J].环境科学,2009,30(6):1762-1766.
[5]喻娇,冯乃宪,喻乐意,等. 土壤环境中典型抗生素残留及其与微生物互作效应研究进展[J].微生物学杂志,2017,37(6):105-113.
[6]KMMERER K. Antibiotics in the environment[J].Upsala Journal of Medical Sciences,2014,119(2):108-112.
[7]CHUNG H S, LEE Y J, RAHMAN M M, et al. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish[J].Science of the Total Environment,2017,605:322.
[8]EPPS A V, BLANEY L. Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices[J].Current Pollution Reports,2016,2(3):135-155.
[9]PARK J Y, HUWE B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils[J].Environmental Pollution,2016,213:561-570.
[10]XIANG L, WU X L, JIANG Y N, et al. Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, south China[J].Environmental Science & Pollution Research,2016,23(14):13984-13995.
[11]ZHAO F, YANG L, CHEN L, et al. Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses[J]. Journal of Environmental Sciences,2019,5:200-212.
[12]朱宇恩,苗佳蕊,郑静怡,等. 汾河沿岸农田土壤喹诺酮类抗生素残留特征及风险评估[J]. 环境科学学报,2019,39(6):1-10.
[13]陈磊,吴赟琦,赵志勇,等. QuEChERS/超高效液相色谱-串联质谱法快速测定土壤中19种氟喹诺酮类抗生素残留[J]. 分析测试学报,2019,38(2):194-200.
[14]袁煦,郑志民,黄天寅,等. 臭氧——生物活性炭深度处理工艺的一些改进措施及工程应用[J]. 给水排水,2012,48(S1):240-243.
[15]OUYANG W Y, SU J Q, RICHNOW H H, et al. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing[J]. Environment International,2019,126:118-126.
[16]JING A, CHEN H, WEI S, et al. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China[J]. Environmental Earth Sciences,2015,74(6):5077-5086.
[17]AUST M O, GODLINSKI F, TRAVIS G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environmental Pollution,2008,156(3):1243-1251.
[18]曾巧云,丁丹,檀笑. 中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报,2018,27(9):1774-1782.
[19]李彦文,莫测辉,赵娜,等. 高效液相色谱法测定水和土壤中磺胺类抗生素[J]. 分析化学,2008(7):954-958.
[20]鲍陈燕,顾国平,徐秋桐,等. 施肥方式对蔬菜地土壤中8种抗生素残留的影响[J]. 农业资源与环境学报,2014,31(4):313-318.
[21]邰义萍. 珠三角地区蔬菜基地土壤中典型抗生素的污染特征研究[D]. 广州:暨南大学,2010.
[22]ANDRIAMALALA A, VIEUBLé-GONOD L, DUMENY V, et al. Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products[J]. Chemosphere,2018,191:607-615.
[23]聂湘平,王翔,陈菊芳,等. 三氯异氰尿酸与盐酸环丙沙星对蛋白核小球藻的毒性效应[J]. 环境科学学报,2007,27(10):1694-1701.
[24]王慧珠,罗义,徐文青,等. 四环素和金霉素对水生生物的生态毒性效应[J]. 农业环境科学学报,2008,27(4):1536-1539.
[25]BATCHELDER A R. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems1[J]. Journal of Environmental Quality,1982,11(4):675.
[26]BRADEL B G, PREIL W, JESKE H. Remission of the free-branching pattern of Euphorbia pulcherrima bytetracycline treatment[J]. Journal of Phytopathology,2010,148(11/12):587-590.
[27]MIGLIORE L, COZZOLINO S, FIORI M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere,2003,52(7):1233-1244.
[28]鲍陈燕,顾国平,章明奎. 兽用抗生素胁迫对水芹生长及其抗生素积累的影响[J]. 土壤通报,2016,47(1):164-172.
[29]沙迪,翟清明,张雪萍,等. 甲氨基阿维菌素苯甲酸盐对黑土区农田土壤动物群落的影响[J]. 地理研究,2015,34(5):872-882.
[30]DONG L, GAO J, XIE X, et al. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida[J]. Chemosphere,2012,89(1):44-51.
[31]ZIZEK S, ZIDAR P. Toxicity of the ionophore antibiotic lasalocid to soil-dwelling invertebrates: avoidance tests in comparison to classic sublethal tests[J]. Chemosphere,2013,92(5):570-575.
[32]ZHU D, AN X L, CHEN Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental Science & Technology,2018,52(5):3081-3090.
[33]KONG W D, ZHU Y G, Fu B J, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community[J]. Environmental Pollution,2006,143(1):129-137.
[34]漆辉,马莎,张乙涵,等. 抗生素残留在土壤环境中的行为及其生态毒性研究进展[J]. 安徽农业科学,2011,39(18):10906-10908,10951.
[35]YANG Q, ZHANG J, ZHU K, et al. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil[J]. Journal of Environmental Sciences,2009,21(7):954-959.
[36]杨基峰,应光国,赖华杰,等. 三种抗生素对土壤呼吸和硝化作用的影响[J]. 生态环境学报,2014,23(6):1050-1056.
[37]FANG H, HAN Y, YIN Y, et al. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J]. Chemosphere,2014,96(2):51-56.
[38]SVEN J, HOLGER H, JAN S, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends in Microbiology,2014,22(9):536-545.
[39]FANG H, HAN L X, ZHANG H P, et al. Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil[J]. Science of the Total Environment,2018,96(2):51-56.
[40]HOLGER H, KORNELIA S. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months[J]. Environmental Microbiology,2010,9(3):657-666.
[41]KUMAR K, GUPTA S C, BAIDOO S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality,2005,34(6):2082-2085.
[42]张志强,李春花,黄绍文,等. 农田系统四环素类抗生素污染研究现状[J]. 辣椒杂志,2013,11(2):1-9,12.
[43]顾冬花. 动物性食品中抗生素的残留、危害及防控措施[J]. 山东畜牧兽医,2015,36(9):78-79.
[44]黄盼盼,周启星,董璐玺. 抗生素对土壤环境的污染与植物修复的研究与展望[J]. 科技信息,2010(11):795-796.
[45]安凤春,莫汉宏,郑明辉,等. DDT及其主要降解产物污染土壤的植物修复[J]. 环境化学,2003(1):19-25.
[46]POLESEL F, ANDERSEN H R, TRAPP S, et al. Removal of antibiotics in biological wastewater treatment systems - a critical assessment using the activated sludge modelling framework for xenobiotics (ASM-X)[J]. Environmental Science & Technology,2016,50(19):10316.
[47]曹佳. 蚯蚓和菌根真菌促进土霉素降解及其修复污染土壤的协同机制[D]. 北京:中国农业大学,2018.
[48]陈小洁,李凤玉,郝雅宾. 两种水生植物对抗生素污染水体的修复作用[J]. 亚热带植物科学,2012,41(4):1-7.
[49]金彩霞,刘军军,陈秋颖,等. 兽药磺胺间甲氧嘧啶对土壤呼吸及酶活性的影响[J]. 农业环境科学学报,2010,29(2):314-318.
[50]裴孟,梁玉婷,易良银,等. 黑麦草对土壤中残留抗生素的降解及其对微生物活性的影响[J]. 环境工程学报,2017,11(5):3179-3186.
[51]PEI M, LIANG Y, YI L, et al. Degradation of residual antibiotics in soils by ryegrass and its effect on microbial activity[J]. Chinese Journal of Environmental Engineering,2017,11(5):3179-3186.
[52]张圣新,罗盼盼,鲍恩东,等. 4种叶菜对强力霉素的吸收与富集特征[J]. 江苏农业学报,2018,34(5):1066-1071.
[53]原文丽. 生物炭对铅和磺胺二甲嘧啶的吸附及其复合污染土壤的修复[D]. 武汉:华中农业大学,2016.
[54]INDHERJITH S, KARTHIKEYAN S, MONICA J H R, et al. Graphene oxide & reduced graphene oxide polysulfone nanocomposite pellets: an alternative adsorbent of antibiotic pollutant-ciprofloxacin[J]. Separation Science and Technology, 2019,54(5):667-674.
[55]YEOM J R, YOON S U,KIM C G. Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria[J]. Chemosphere,2017,182:771-780.
[56]FATHY M, MOGHNY T A, AWADALLAH A E, et al. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin[J]. Applied Water Science,2017,7(1):309-313.
[57]CONDE-CID M, FERNANDEZ-CALVINO D, NOVOA-MUNOZ J C, et al. Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark[J]. Science of the Total Environment,2018,635:1520-1529.
[58]KHATIBI E S, HAGHIGHI M, MAHBOOB S. Efficient surface design of reduced graphene oxide, carbon nanotube and carbon active with cupper nanocrystals for enhanced simulated-solar-light photocatalytic degradation of acid orange in water[J]. Applied Surface Science,2019,465:937-949.
[59]SHABANI M, HAGHIGHI M, KAHFOROUSHAN D, et al. Mesoporous-mixed-phase of hierarchical bismuth oxychlorides nanophotocatalyst with enhanced photocatalytic application in treatment of antibiotic effluents[J]. Journal of Cleaner Production,2019,207:444-457.
[60]ZARRABI M, HAGHIGHI M, ALIZADEH R. Sonoprecipitation dispersion of ZnO nanoparticles over graphene oxide used in photocatalytic degradation of methylene blue in aqueous solution: Influence of irradiation time and power[J]. Ultrasonics Sonochemistry,2018,48:370-382.
[61]LIN Y C, HSIAO K W,LIN A Y C. Photolytic degradation of ciprofloxacin in solid and aqueous environments: kinetics, phototransformation pathways, and byproducts[J]. Environmental Science and Pollution Research,2018,25(3):2303-2312.
[62]FARD S G, HAGHIGHI M, SHABANI M. Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr)(x)(Bi7O9I3)(1-x) solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light[J]. Applied Catalysis B-Environmental,2019,248:320-331.
[63]NGUYEN V T, HUNG C M, NGUYEN T B, et al. Efficient heterogeneous activation of persulfate by iron-modified biochar for removal of antibiotic from aqueous solution: a case study of tetracycline removal[J]. Catalysts,2019,9(1):49.
[64]ZHONG W,WANG J. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nanocomposite as a Fenton-like catalyst[J]. Journal of Chemical Technology & Biotechnology,2016,92(4):874-883.
[65]张璐. 二氧化锰对四环素类抗生素的降解行为研究[D]. 杭州:浙江工业大学,2012.
[66]CHEN G, ZHAO L,DONG Y H. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide[J]. Journal of Hazardous Materials,2011,193(20):128-138.
[67]LI Y, WEI D,DU Y. Oxidative transformation of levofloxacin by δ-MnO2 : products, pathways and toxicity assessment[J]. Chemosphere,2015,119(1):282-288.
[68]YANG J F, YANG L M, YING G G, et al. Reaction of antibiotic sulfadiazine with manganese dioxide in aqueous phase: kinetics, pathways and toxicity assessment[J]. Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering,2016,52(2):135-143.
[69]JUAN G, CURTIS H, CUN L, et al. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology,2012,46(5):2642-2651.
[70]TH R K,PEDERSEN J A. Kinetics of oxytetracycline reaction with a hydrous manganese oxide[J]. Environmental Science & Technology,2006,40(23):7216-7221.
[71]BEAUSSE J. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances[J]. Trac Trends in Analytical Chemistry,2004,23(10):753-761.
[72]ZHAO Y P, TAN Y Y, GUO Y, et al. Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils[J]. Environmental Pollution,2013,180:206-213.
[73]陈俊辉. 抗生素类污染物在土壤含水氧化物中吸附行为的研究[D]. 陕西:西北师范大学,2010.
[74]李媛,魏东斌,杜宇国. 锰氧化物对有机污染物的转化机制研究进展[J]. 环境化学,2013,32(7):1288-1299.
[75]WANG H, ZHANG D, MOU S, et al. Simultaneous removal of tetracycline hydrochloride and As(III) using poorly-crystalline manganese dioxide[J]. Chemosphere,2015,136:102-110.
[76]杨晶晶. 纳米水合二氧化锰氧化水中典型有机污染物的效能研究[D]. 哈尔滨:哈尔滨工业大学,2013.
[77]ZHUANG J G, WANG S Y, TAN Y, et al. Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study[J]. Science of the Total Environment,2019,671:705-713.
[78]DONG G H, HUANG L H, WU X Y, et al. Effect and mechanism analysis of MnO2 on permeable reactive barrier (PRB) system for the removal of tetracycline[J]. Chemosphere,2018,193:702-710.
[79]SONG Z, MA Y L,LI C E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment,2019,651:580-590.
[80]YAN Z L, LIU Y G, TAN X F, et al. Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms[J]. Chemical Engineering Journal,2017,314:612-621.
[81]JALALI H M. Kinetic study of antibiotic ciprofloxacin ozonation by MWCNT/MnO2 using Monte Carlo simulation[J]. Materials Science & Engineering C-Materials for Biological Applications,2016,59:924-929.
[82]ZHAO Z, ZHAO J,YANG C. Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system[J]. Chemical Engineering Journal,2017,327:481-489.
[83]DONG Z, ZHANG Q, CHEN B Y, et al. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chemical Engineering Journal,2019,357:337-347.
[84]SUN Y, LI Y, MI X Y, et al. Evaluation of ciprofloxacin destruction between ordered mesoporous and bulk NiMn2O4/CF cathode: efficient mineralization in a heterogeneous electro-Fenton-like process[J]. Environmental Science-Nano,2019,6(2):661-671.
[85]伊丽丽,焦文涛,陈卫平. 不同抗生素在剖面土壤中的吸附特征[J]. 环境化学,2013,32(12):2357-2363.
[86]HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporin[J]. Environmental Science & Technology,2018,52(16):9188-9195.
[87]YUAN L, YAN M, HUANG Z, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution[J]. Journal of Colloid And Interface Science,2019,541:101-113.
[88]JAAFARI J, GHOZIKALI M G, AZALI A, et al. Adsorption of p-Cresol on Al2O3 coated multi-walled carbon nanotubes: response surface methodology and isotherm study[J]. Journal of Industrial and Engineering Chemistry,2018,57:396-404.
[89]MAHAMALLIK P, SAHA S,PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal,2015,276(5):155-165.
[90]TAZWAR G, JAIN A,DEVRA V. Oxidative degradation of levofloxacin by water-soluble manganese dioxide in aqueous acidic medium: a kinetic study[J]. Chemical Papers,2017,71(9):1-10.
[91]SONG Y, JIANG J, MA J, et al. Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents[J]. Water Research,2019,153:200-207.
[92]HUICHUN Z, WAN-RU C,CHING-HUA H. Kinetic modeling of oxidation of antibacterial agents by manganese oxide[J]. Environmental Science & Technology,2008,42(15):5548-5554.
[93]KLAUSEN J, AND S B H, SCHWARZENBACH R P. Oxidation of substituted anilines by aqueous MnO2: effect of co-solutes on initial and quasi-steady-state kinetics[J]. Environm Sci Technol,1997,31(9):2642-2649.
[94]XU L, XU C, ZHAO M, et al. Oxidative removal of aqueous steroid estrogens by manganese oxides[J]. Water Research,2008,42(20):5038-5044.
[95]HSU M H, KUO T H, LAI W W P, et al. Effect of environmental factors on the oxidative transformation of cephalosporin antibiotics by manganese dioxides[J]. Environmental Science-Processes & Impacts,2019,21(4):692-700.
[96]SONG Z, MA Y L,LI C E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment,2019,651:580-591.
[97]SHIM J, KUMAR M, GOSWAMI R, et al. Removal of p-cresol and tylosin from water using a novel composite of alginate, recycled MnO2 and activated carbon[J]. Journal of Hazardous Materials,2019,364:419-428.
[98]SONG Z, MA Y L, LI C E. Enhanced adsorption of tetracycline antibiotics from pharmaceutical wastewater on expanded graphite composites modified by metal oxide[J]. Desalination and Water Treatment,2019,153:367-379.
[99]TONG F, GU X, GU C, et al. Stimulation of tetrabromobisphenol A binding to soil humic substances by birnessite and the chemical structure of the bound residues[J]. Environmental Science & Technology,2016,50(12):6257-6266.