[1]刘迪,李赟,卢信,等.抗生素在土壤中的环境风险及锰氧化物修复技术的研究进展[J].江苏农业学报,2020,(03):785-794.[doi:doi:10.3969/j.issn.1000-4440.2020.03.034]
 LIU Di,LI Yun,LU Xin,et al.Research progress on environmental risks and remediation of antibiotic contaminated soil by manganese oxide technology[J].,2020,(03):785-794.[doi:doi:10.3969/j.issn.1000-4440.2020.03.034]
点击复制

抗生素在土壤中的环境风险及锰氧化物修复技术的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
785-794
栏目:
综述
出版日期:
2020-06-30

文章信息/Info

Title:
Research progress on environmental risks and remediation of antibiotic contaminated soil by manganese oxide technology
作者:
刘迪12李赟2卢信2范如芹2刘丽珠2高岩2童非2张振华2
(1.南京农业大学资源与环境科学学院,江苏南京210095;2.江苏省农业科学院农业资源与环境研究所/农业农村部江苏耕地保育科学观测实验站,江苏南京210014)
Author(s):
LIU Di12LI Yun2LU Xin2FAN Ru-qin2LIU Li-zhu2GAO Yan2TONG Fei2ZHANG Zhen-hua2
(1.College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Agricultural Resources and Environmental Sciences, Jiangsu Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Arable Land Conservation, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)
关键词:
锰氧化物抗生素修复
Keywords:
manganese oxideantibioticsremediation
分类号:
X53
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.034
文献标志码:
A
摘要:
土壤中以四环素类为代表的抗生素的污染较为严重,会对土壤环境产生诸多生态风险,并威胁着人类的健康。本文主要介绍了土壤中抗生素的污染现状、抗生素污染对土壤生物和人类健康的危害以及土壤环境中抗生素的主要降解方式,着重综述了锰氧化物修复技术对抗生素污染土壤修复的作用、机理和影响因素等方面的研究进展, 并对今后抗生素污染土壤的锰氧化物修复研究进行了展望。
Abstract:
The pollution of antibiotics represented by tetracyclines in soil is serious, which will bring many ecological risks to soil environment and threaten human health. In this paper, the present situation of antibiotic pollution in soil, the harm of antibiotic pollution to soil organisms and human health, and the main degradation methods of antibiotics in soil environment were introduced. The effects, mechanisms and influencing factors of the remediation of antibiotic-contaminated soil by manganese oxide technology were reviewed, and the future research directions on the remediation of antibiotic-contaminated soil by manganese oxide were prospected.

参考文献/References:

[1]GOTHWAL R, SHASHIDHAR T. Antibiotic pollution in the environment: a review[J]. Clean-Soil, Air, Water,2015,43(4):479-489.
[2]LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China[J].Environment International,2013,59(3):208-224.
[3]王敏,唐景春. 土壤中的抗生素污染及其生态毒性研究进展[J].农业环境科学学报,2010,29(S1):261-266.
[4]李彦文,莫测辉,赵娜,等. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J].环境科学,2009,30(6):1762-1766.
[5]喻娇,冯乃宪,喻乐意,等. 土壤环境中典型抗生素残留及其与微生物互作效应研究进展[J].微生物学杂志,2017,37(6):105-113.
[6]KMMERER K. Antibiotics in the environment[J].Upsala Journal of Medical Sciences,2014,119(2):108-112.
[7]CHUNG H S, LEE Y J, RAHMAN M M, et al. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish[J].Science of the Total Environment,2017,605:322.
[8]EPPS A V, BLANEY L. Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices[J].Current Pollution Reports,2016,2(3):135-155.
[9]PARK J Y, HUWE B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils[J].Environmental Pollution,2016,213:561-570.
[10]XIANG L, WU X L, JIANG Y N, et al. Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, south China[J].Environmental Science & Pollution Research,2016,23(14):13984-13995.
[11]ZHAO F, YANG L, CHEN L, et al. Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses[J]. Journal of Environmental Sciences,2019,5:200-212.
[12]朱宇恩,苗佳蕊,郑静怡,等. 汾河沿岸农田土壤喹诺酮类抗生素残留特征及风险评估[J]. 环境科学学报,2019,39(6):1-10.
[13]陈磊,吴赟琦,赵志勇,等. QuEChERS/超高效液相色谱-串联质谱法快速测定土壤中19种氟喹诺酮类抗生素残留[J]. 分析测试学报,2019,38(2):194-200.
[14]袁煦,郑志民,黄天寅,等. 臭氧——生物活性炭深度处理工艺的一些改进措施及工程应用[J]. 给水排水,2012,48(S1):240-243.
[15]OUYANG W Y, SU J Q, RICHNOW H H, et al. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing[J]. Environment International,2019,126:118-126.
[16]JING A, CHEN H, WEI S, et al. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China[J]. Environmental Earth Sciences,2015,74(6):5077-5086.
[17]AUST M O, GODLINSKI F, TRAVIS G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environmental Pollution,2008,156(3):1243-1251.
[18]曾巧云,丁丹,檀笑. 中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报,2018,27(9):1774-1782.
[19]李彦文,莫测辉,赵娜,等. 高效液相色谱法测定水和土壤中磺胺类抗生素[J]. 分析化学,2008(7):954-958.
[20]鲍陈燕,顾国平,徐秋桐,等. 施肥方式对蔬菜地土壤中8种抗生素残留的影响[J]. 农业资源与环境学报,2014,31(4):313-318.
[21]邰义萍. 珠三角地区蔬菜基地土壤中典型抗生素的污染特征研究[D]. 广州:暨南大学,2010.
[22]ANDRIAMALALA A, VIEUBLé-GONOD L, DUMENY V, et al. Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products[J]. Chemosphere,2018,191:607-615.
[23]聂湘平,王翔,陈菊芳,等. 三氯异氰尿酸与盐酸环丙沙星对蛋白核小球藻的毒性效应[J]. 环境科学学报,2007,27(10):1694-1701.
[24]王慧珠,罗义,徐文青,等. 四环素和金霉素对水生生物的生态毒性效应[J]. 农业环境科学学报,2008,27(4):1536-1539.
[25]BATCHELDER A R. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems1[J]. Journal of Environmental Quality,1982,11(4):675.
[26]BRADEL B G, PREIL W, JESKE H. Remission of the free-branching pattern of Euphorbia pulcherrima bytetracycline treatment[J]. Journal of Phytopathology,2010,148(11/12):587-590.
[27]MIGLIORE L, COZZOLINO S, FIORI M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere,2003,52(7):1233-1244.
[28]鲍陈燕,顾国平,章明奎. 兽用抗生素胁迫对水芹生长及其抗生素积累的影响[J]. 土壤通报,2016,47(1):164-172.
[29]沙迪,翟清明,张雪萍,等. 甲氨基阿维菌素苯甲酸盐对黑土区农田土壤动物群落的影响[J]. 地理研究,2015,34(5):872-882.
[30]DONG L, GAO J, XIE X, et al. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida[J]. Chemosphere,2012,89(1):44-51.
[31]ZIZEK S, ZIDAR P. Toxicity of the ionophore antibiotic lasalocid to soil-dwelling invertebrates: avoidance tests in comparison to classic sublethal tests[J]. Chemosphere,2013,92(5):570-575.
[32]ZHU D, AN X L, CHEN Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental Science & Technology,2018,52(5):3081-3090.
[33]KONG W D, ZHU Y G, Fu B J, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community[J]. Environmental Pollution,2006,143(1):129-137.
[34]漆辉,马莎,张乙涵,等. 抗生素残留在土壤环境中的行为及其生态毒性研究进展[J]. 安徽农业科学,2011,39(18):10906-10908,10951.
[35]YANG Q, ZHANG J, ZHU K, et al. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil[J]. Journal of Environmental Sciences,2009,21(7):954-959.
[36]杨基峰,应光国,赖华杰,等. 三种抗生素对土壤呼吸和硝化作用的影响[J]. 生态环境学报,2014,23(6):1050-1056.
[37]FANG H, HAN Y, YIN Y, et al. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J]. Chemosphere,2014,96(2):51-56.
[38]SVEN J, HOLGER H, JAN S, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends in Microbiology,2014,22(9):536-545.
[39]FANG H, HAN L X, ZHANG H P, et al. Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil[J]. Science of the Total Environment,2018,96(2):51-56.
[40]HOLGER H, KORNELIA S. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months[J]. Environmental Microbiology,2010,9(3):657-666.
[41]KUMAR K, GUPTA S C, BAIDOO S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality,2005,34(6):2082-2085.
[42]张志强,李春花,黄绍文,等. 农田系统四环素类抗生素污染研究现状[J]. 辣椒杂志,2013,11(2):1-9,12.
[43]顾冬花. 动物性食品中抗生素的残留、危害及防控措施[J]. 山东畜牧兽医,2015,36(9):78-79.
[44]黄盼盼,周启星,董璐玺. 抗生素对土壤环境的污染与植物修复的研究与展望[J]. 科技信息,2010(11):795-796.
[45]安凤春,莫汉宏,郑明辉,等. DDT及其主要降解产物污染土壤的植物修复[J]. 环境化学,2003(1):19-25.
[46]POLESEL F, ANDERSEN H R, TRAPP S, et al. Removal of antibiotics in biological wastewater treatment systems - a critical assessment using the activated sludge modelling framework for xenobiotics (ASM-X)[J]. Environmental Science & Technology,2016,50(19):10316.
[47]曹佳. 蚯蚓和菌根真菌促进土霉素降解及其修复污染土壤的协同机制[D]. 北京:中国农业大学,2018.
[48]陈小洁,李凤玉,郝雅宾. 两种水生植物对抗生素污染水体的修复作用[J]. 亚热带植物科学,2012,41(4):1-7.
[49]金彩霞,刘军军,陈秋颖,等. 兽药磺胺间甲氧嘧啶对土壤呼吸及酶活性的影响[J]. 农业环境科学学报,2010,29(2):314-318.
[50]裴孟,梁玉婷,易良银,等. 黑麦草对土壤中残留抗生素的降解及其对微生物活性的影响[J]. 环境工程学报,2017,11(5):3179-3186.
[51]PEI M, LIANG Y, YI L, et al. Degradation of residual antibiotics in soils by ryegrass and its effect on microbial activity[J]. Chinese Journal of Environmental Engineering,2017,11(5):3179-3186.
[52]张圣新,罗盼盼,鲍恩东,等. 4种叶菜对强力霉素的吸收与富集特征[J]. 江苏农业学报,2018,34(5):1066-1071.
[53]原文丽. 生物炭对铅和磺胺二甲嘧啶的吸附及其复合污染土壤的修复[D]. 武汉:华中农业大学,2016.
[54]INDHERJITH S, KARTHIKEYAN S, MONICA J H R, et al. Graphene oxide & reduced graphene oxide polysulfone nanocomposite pellets: an alternative adsorbent of antibiotic pollutant-ciprofloxacin[J]. Separation Science and Technology, 2019,54(5):667-674.
[55]YEOM J R, YOON S U,KIM C G. Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria[J]. Chemosphere,2017,182:771-780.
[56]FATHY M, MOGHNY T A, AWADALLAH A E, et al. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin[J]. Applied Water Science,2017,7(1):309-313.
[57]CONDE-CID M, FERNANDEZ-CALVINO D, NOVOA-MUNOZ J C, et al. Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark[J]. Science of the Total Environment,2018,635:1520-1529.
[58]KHATIBI E S, HAGHIGHI M, MAHBOOB S. Efficient surface design of reduced graphene oxide, carbon nanotube and carbon active with cupper nanocrystals for enhanced simulated-solar-light photocatalytic degradation of acid orange in water[J]. Applied Surface Science,2019,465:937-949.
[59]SHABANI M, HAGHIGHI M, KAHFOROUSHAN D, et al. Mesoporous-mixed-phase of hierarchical bismuth oxychlorides nanophotocatalyst with enhanced photocatalytic application in treatment of antibiotic effluents[J]. Journal of Cleaner Production,2019,207:444-457.
[60]ZARRABI M, HAGHIGHI M, ALIZADEH R. Sonoprecipitation dispersion of ZnO nanoparticles over graphene oxide used in photocatalytic degradation of methylene blue in aqueous solution: Influence of irradiation time and power[J]. Ultrasonics Sonochemistry,2018,48:370-382.
[61]LIN Y C, HSIAO K W,LIN A Y C. Photolytic degradation of ciprofloxacin in solid and aqueous environments: kinetics, phototransformation pathways, and byproducts[J]. Environmental Science and Pollution Research,2018,25(3):2303-2312.
[62]FARD S G, HAGHIGHI M, SHABANI M. Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr)(x)(Bi7O9I3)(1-x) solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light[J]. Applied Catalysis B-Environmental,2019,248:320-331.
[63]NGUYEN V T, HUNG C M, NGUYEN T B, et al. Efficient heterogeneous activation of persulfate by iron-modified biochar for removal of antibiotic from aqueous solution: a case study of tetracycline removal[J]. Catalysts,2019,9(1):49.
[64]ZHONG W,WANG J. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nanocomposite as a Fenton-like catalyst[J]. Journal of Chemical Technology & Biotechnology,2016,92(4):874-883.
[65]张璐. 二氧化锰对四环素类抗生素的降解行为研究[D]. 杭州:浙江工业大学,2012.
[66]CHEN G, ZHAO L,DONG Y H. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide[J]. Journal of Hazardous Materials,2011,193(20):128-138.
[67]LI Y, WEI D,DU Y. Oxidative transformation of levofloxacin by δ-MnO2 : products, pathways and toxicity assessment[J]. Chemosphere,2015,119(1):282-288.
[68]YANG J F, YANG L M, YING G G, et al. Reaction of antibiotic sulfadiazine with manganese dioxide in aqueous phase: kinetics, pathways and toxicity assessment[J]. Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering,2016,52(2):135-143.
[69]JUAN G, CURTIS H, CUN L, et al. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology,2012,46(5):2642-2651.
[70]TH R K,PEDERSEN J A. Kinetics of oxytetracycline reaction with a hydrous manganese oxide[J]. Environmental Science & Technology,2006,40(23):7216-7221.
[71]BEAUSSE J. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances[J]. Trac Trends in Analytical Chemistry,2004,23(10):753-761.
[72]ZHAO Y P, TAN Y Y, GUO Y, et al. Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils[J]. Environmental Pollution,2013,180:206-213.
[73]陈俊辉. 抗生素类污染物在土壤含水氧化物中吸附行为的研究[D]. 陕西:西北师范大学,2010.
[74]李媛,魏东斌,杜宇国. 锰氧化物对有机污染物的转化机制研究进展[J]. 环境化学,2013,32(7):1288-1299.
[75]WANG H, ZHANG D, MOU S, et al. Simultaneous removal of tetracycline hydrochloride and As(III) using poorly-crystalline manganese dioxide[J]. Chemosphere,2015,136:102-110.
[76]杨晶晶. 纳米水合二氧化锰氧化水中典型有机污染物的效能研究[D]. 哈尔滨:哈尔滨工业大学,2013.
[77]ZHUANG J G, WANG S Y, TAN Y, et al. Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study[J]. Science of the Total Environment,2019,671:705-713.
[78]DONG G H, HUANG L H, WU X Y, et al. Effect and mechanism analysis of MnO2 on permeable reactive barrier (PRB) system for the removal of tetracycline[J]. Chemosphere,2018,193:702-710.
[79]SONG Z, MA Y L,LI C E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment,2019,651:580-590.
[80]YAN Z L, LIU Y G, TAN X F, et al. Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms[J]. Chemical Engineering Journal,2017,314:612-621.
[81]JALALI H M. Kinetic study of antibiotic ciprofloxacin ozonation by MWCNT/MnO2 using Monte Carlo simulation[J]. Materials Science & Engineering C-Materials for Biological Applications,2016,59:924-929.
[82]ZHAO Z, ZHAO J,YANG C. Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system[J]. Chemical Engineering Journal,2017,327:481-489.
[83]DONG Z, ZHANG Q, CHEN B Y, et al. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chemical Engineering Journal,2019,357:337-347.
[84]SUN Y, LI Y, MI X Y, et al. Evaluation of ciprofloxacin destruction between ordered mesoporous and bulk NiMn2O4/CF cathode: efficient mineralization in a heterogeneous electro-Fenton-like process[J]. Environmental Science-Nano,2019,6(2):661-671.
[85]伊丽丽,焦文涛,陈卫平. 不同抗生素在剖面土壤中的吸附特征[J]. 环境化学,2013,32(12):2357-2363.
[86]HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporin[J]. Environmental Science & Technology,2018,52(16):9188-9195.
[87]YUAN L, YAN M, HUANG Z, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution[J]. Journal of Colloid And Interface Science,2019,541:101-113.
[88]JAAFARI J, GHOZIKALI M G, AZALI A, et al. Adsorption of p-Cresol on Al2O3 coated multi-walled carbon nanotubes: response surface methodology and isotherm study[J]. Journal of Industrial and Engineering Chemistry,2018,57:396-404.
[89]MAHAMALLIK P, SAHA S,PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal,2015,276(5):155-165.
[90]TAZWAR G, JAIN A,DEVRA V. Oxidative degradation of levofloxacin by water-soluble manganese dioxide in aqueous acidic medium: a kinetic study[J]. Chemical Papers,2017,71(9):1-10.
[91]SONG Y, JIANG J, MA J, et al. Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents[J]. Water Research,2019,153:200-207.
[92]HUICHUN Z, WAN-RU C,CHING-HUA H. Kinetic modeling of oxidation of antibacterial agents by manganese oxide[J]. Environmental Science & Technology,2008,42(15):5548-5554.
[93]KLAUSEN J, AND S B H, SCHWARZENBACH R P. Oxidation of substituted anilines by aqueous MnO2: effect of co-solutes on initial and quasi-steady-state kinetics[J]. Environm Sci Technol,1997,31(9):2642-2649.
[94]XU L, XU C, ZHAO M, et al. Oxidative removal of aqueous steroid estrogens by manganese oxides[J]. Water Research,2008,42(20):5038-5044.
[95]HSU M H, KUO T H, LAI W W P, et al. Effect of environmental factors on the oxidative transformation of cephalosporin antibiotics by manganese dioxides[J]. Environmental Science-Processes & Impacts,2019,21(4):692-700.
[96]SONG Z, MA Y L,LI C E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment,2019,651:580-591.
[97]SHIM J, KUMAR M, GOSWAMI R, et al. Removal of p-cresol and tylosin from water using a novel composite of alginate, recycled MnO2 and activated carbon[J]. Journal of Hazardous Materials,2019,364:419-428.
[98]SONG Z, MA Y L, LI C E. Enhanced adsorption of tetracycline antibiotics from pharmaceutical wastewater on expanded graphite composites modified by metal oxide[J]. Desalination and Water Treatment,2019,153:367-379.
[99]TONG F, GU X, GU C, et al. Stimulation of tetrabromobisphenol A binding to soil humic substances by birnessite and the chemical structure of the bound residues[J]. Environmental Science & Technology,2016,50(12):6257-6266.

相似文献/References:

[1]汤贝贝,张振华,卢信,等.养殖废水中抗生素的植物修复研究进展[J].江苏农业学报,2017,(01):224.[doi:10.3969/j.issn.1000-4440.2017.01.036]
 TANG Bei-bei,ZHANG Zhen-hua,LU Xin,et al.Advances in Phytoremediation of antibiotics in breeding wastewater[J].,2017,(03):224.[doi:10.3969/j.issn.1000-4440.2017.01.036]
[2]席珍华,刘彦东,张婵.微塑料和抗生素对水生生物联合毒性效应研究进展[J].江苏农业学报,2024,(08):1561.[doi:doi:10.3969/j.issn.1000-4440.2024.08.020]
 XI Zhenhua,LIU Yandong,ZHANG Chan.Research progress on the combined toxic effects of microplastics and antibiotics on aquatic organisms[J].,2024,(03):1561.[doi:doi:10.3969/j.issn.1000-4440.2024.08.020]

备注/Memo

备注/Memo:
收稿日期:2019-07-22基金项目:国家自然科学基金项目(41807140); 江苏省农业科技自主创新基金项目[CX(16)1001-4]; 江苏省农业科学院科研基金项目(6111637)作者简介:刘迪(1996-),女,山东济宁人,硕士研究生,主要从事土壤修复研究。(Tel) 025-84391207;(E-mail) 1102751524@qq.com通讯作者:张振华,(Tel) 025-84391207;(E-mail)zhenhuaz70@hotmail.com 。童非为共同通讯作者。
更新日期/Last Update: 2020-07-14