[1]赵为民,涂枫,王丽,等.猪PKM2基因在肺炎支原体感染3D4/21细胞后的互作蛋白质鉴定与分析[J].江苏农业学报,2019,(06):1381-1389.[doi:doi:10.3969/j.issn.1000-4440.2019.06.016]
 ZHAO Wei-min,TU Feng,WANG Li,et al.Identification and analysis of interaction proteins of porcine PKM2 gene in 3D4/21 cells during Mycoplasma pneumoniae infection[J].,2019,(06):1381-1389.[doi:doi:10.3969/j.issn.1000-4440.2019.06.016]
点击复制

猪PKM2基因在肺炎支原体感染3D4/21细胞后的互作蛋白质鉴定与分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
1381-1389
栏目:
畜牧兽医·水产养殖
出版日期:
2019-12-31

文章信息/Info

Title:
Identification and analysis of interaction proteins of porcine PKM2 gene in 3D4/21 cells during Mycoplasma pneumoniae infection
作者:
赵为民12涂枫12王丽12任守文12付言峰12李碧侠12徐小波12陈哲12方晓敏12
(1. 江苏省农业科学院畜牧研究所/江苏省农业种质资源保护与利用平台,江苏南京210014; 2. 农业部种养结合重点实验室,江苏南京210014)
Author(s):
ZHAO Wei-min12TU Feng12WANG Li12REN Shou-wen12FU Yan-feng12LI Bi-xia12XU Xiao-bo12CHEN Zhe12FANG Xiao-min12
(1.Institute of Animal Science, Jiangsu Academy of Agricultural Sciences/Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing 210014, China; 2. Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China)
关键词:
PKM2基因肺炎支原体互作蛋白质免疫共沉淀
Keywords:
porcinePKM2 geneMycoplasma pneumoniaeinteraction proteinco-immunoprecipitation(Co-IP)
分类号:
S852.62
DOI:
doi:10.3969/j.issn.1000-4440.2019.06.016
文献标志码:
A
摘要:
通过构建含有HA标签的PKM2过表达质粒转染3D4/21细胞,利用免疫共沉淀(Co-IP)与液相色谱-质谱联用(LC-MS/MS)技术分析与鉴定猪PKM2基因在肺炎支原体感染猪肺泡巨噬细胞3D4/21后的互作蛋白质,并对这些互作蛋白质进行GO与KEGG通路分析。结果显示肺炎支原体感染3D4/21细胞后,PKM2在mRNA水平和蛋白质水平上表达上调,其表达水平呈现剂量与时间依懒性。免疫共沉淀反应结果显示IP与IgG组共鉴定到72个蛋白质,这2组鉴定到的蛋白质数分别为60和19,其中7个蛋白质在2组中同时鉴定到。GO分析结果表明IP组的互作蛋白质主要参与了NAD代谢过程、NADH代谢过程、肌原纤维组装、NADH 再生和葡萄糖代谢丙酮酸等生物过程,其中大多数与能量代谢有关。KEGG pathway分析结果表明互作蛋白质参与了致病性大肠杆菌感染、军团杆菌病、糖酵解/糖异生、丙酮酸代谢和癌症中的中枢碳代谢等通路,这些通路与细菌感染和能量代谢有关。
Abstract:
3D4/21 cells were transfected withHA-tagged PKM2-overexpression plasmid, and the co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometry (LC-MS/MS) technique were used to identify and analyze the interaction protein of porcine PKM2 gene in porcine alveolar macrophages 3D4/21 during Mycoplasma pneumoniae infection. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations were performed on these interaction proteins. The results showed that PKM2 was up-regulated at mRNA and protein levels after Mycoplasma pneumoniae infection in 3D4/21, and its expression level was dose and time-dependent. A total of 72 proteins were identified in the IP and IgG groups in the co-immunoprecipitation reaction. The number of proteins identified in the above two groups was 60 and 19, respectively, and seven proteins were identified in both groups. GO analysis for biological processes showed that the interaction proteins of IP group were mainly involved in NAD metabolism process, NADH metabolism process, myofibril assembly, NADH regeneration and glucose catabolic process to pyruvate, most of which were related to energy metabolism. The KEGG pathway results indicated that the interacting proteins were involved in pathogenic Escherichia coli infection, legionellosis, glycolysis/gluconeogenesis, pyruvate metabolism, and central carbon metabolism in cancer, which were related to bacteria infection and energy metabolism.

参考文献/References:

[1] VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
[2]CHRISTOFK H R, VANDER HEIDEN M G, HARRIS M H, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth [J].Nature, 2008, 452(7184):230-233.
[3]WONG N, OJO D, YAN J, et al. PKM2 contributes to cancer metabolism [J]. Cancer Lett, 2015, 356(2):184-191.
[4]DAYTON T L, JACKS T, VANDER HEIDEN M G. PKM2, cancer metabolism, and the road ahead [J]. EMBO Rep, 2016, 17(12):1721-1730.
[5]SIDDIQUI F A, PRAKASAM G, CHATTOPADHYAY S, et al. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition [J]. Sci Rep, 2018, 8(1):8323.
[6]YANG L, XIE M, YANG M, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis[J]. Nat Commun, 2014, 5:4436.
[7]PALSSON-MCDERMOTT E M,CURTIS A M,GOEL G, et al. Pyruvate kinase M2 regulates Hif-1a activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metabolism, 2015, 21(1):65-80.
[8]YANG P, LI Z, LI H, et al. Pyruvate kinase M2 accelerates pro-inflammatory cytokine secretion and cell proliferation induced by lipopolysaccharide in colorectal cancer[J]. Cell Signal, 2015, 27(7):1525-1532.
[9]方晓敏,赵为民,付言峰,等.猪支原体肺炎发生的品种敏感差异及分子基础[J].中国农业科学,2015,48(14):2839-2847.
[10]ZHOU Y J, ZHU J P, ZHOU T, et al. Identification of differentially expressed proteins in porcine alveolar macrophages infected with virulent/attenuated strains of porcine reproductive and respiratory syndrome virus[J]. PLoS ONE, 2014, 9(1):1-11.
[11]MCGUIRE K, GLASS E J. The expanding role of microarrays in the investigation of macrophage responses to pathogens[J]. Vet Immunol Immunopathol, 2005, 105(3/4):259-275.
[12]LU J, WU X, HONG M,et al. A potential suppressive effect of natural antisense IL-1β RNA on lipopolysaccharide-induced IL-1β expression [J]. J Immunol, 2013, 190(12):6570-6578.
[13]DAVIS J K, DAVIDSON M K, SCHOEB T R, et al. Decreased intrapulmonary killing of Mycoplasma pulmonis after short-term exposure to NO2 is associated with damaged alveolar macrophages[J]. Am Rev Respir Dis, 1992, 145(2 Pt 1):406-411.
[14]LOVE W, DOBBS N, TABOR L,et al. Toll-like receptor 2 (TLR2) plays a major role in innate resistance in the lung against murine Mycoplasma[J]. PLoS ONE,2010,5(5):e10739.
[15]GAO X, WANG H, YANG J J, et al. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase[J]. Mol Cell, 2012, 45(5):598-609.
[16]YANG W, XIA Y, JI H,et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation[J]. Nature, 2011, 480(7375):118-122.
[17]MORFOUACE M, LALIER L, OLIVER L, et al. Control of glioma cell death and differentiation by PKM2-Oct4 interaction[J]. Cell Death Dis, 2014,5:e1036.
[18]GALVAN-PENA S, O′NEILL L A. Metabolic reprograming in macrophage polarization[J]. Front Immunol, 2014, 5:420.
[19]ALVES-FILHO J C, PALSSON-MCDERMOTT E M. Pyruvate kinase M2: A potential target for regulating inflammation[J]. Front Immunol, 2016, 7:145.
[20]GABER T, STREHL C, BUTTGEREIT F. Metabolic regulation of inflammation[J]. Nat Rev Rheumatol, 2017, 13(5):267-279.
[21]MAKANJI Y, TAGLER D, PAHNKE J,et al. Hypoxia-mediated carbohydrate metabolism and transport promote early-stage murine follicle growth and survival[J]. Am J Physiol Endocrinol Metab, 2014, 306(8):893-903.
[22]SHENG H, TANG W. Glycolysis inhibitors for anticancer therapy: A review of recent patents[J]. Recent Pat Anticancer Drug Discov, 2016,11(3):297-308.
[23]IVANOV A I, PARKOS C A, NUSRAT A. Cytoskeletal regulation of epithelial barrier function during inflammation[J]. Am J Pathol, 2010, 177(2):512-524.
[24]CUNHA B A. Atypical pneumonias: current clinical concepts focusing on Legionnaires′ disease[J]. Curr Opin Pulm Med, 2008,14(3):183-194.
[25]SHARMA L, LOSIER A, TOLBERT T, et al. Atypicalpneumonia: Updates on legionella, chlamydophila, and mycoplasma pneumonia[J]. Clin Chest Med, 2017, 38(1):45-58.
[26]GENG J, LI H, HUANG C, et al. Functional analysis of HSPA1A and HSPA8 in parturition[J]. Biochem Biophys Res Commun, 2017, 483(1):371-379.
[27]SWAROOP S, SENGUPTA N, SURYAWANSHI A R, et al. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis[J]. J Neuroinflammation, 2016,13:27.
[28]SUN Y, ZhENG J, XU Y, et al. Paraquat-induced inflammatory response of microglia through HSP60/TLR4 signaling[J]. Hum Exp Toxicol, 2018, 37(11):1161-1168.

相似文献/References:

[1]丁 威,邢 军,魏全伟,等.二花脸猪卵巢卵泡形成和早期发育过程中雌二醇和孕酮含量变化及其受体定位[J].江苏农业学报,2016,(02):383.[doi:10.3969/j.issn.1000-4440.2016.02.023]
 DING Wei,XING Jun,WEI Quan-wei,et al.Changes in concentrations of estrodiol and progesterone during ovarian follicular development and localization of ovarian estradiol receptor(ER)and progesterone receptor(PR)in the fetal and neonatal Erhualian swines[J].,2016,(06):383.[doi:10.3969/j.issn.1000-4440.2016.02.023]
[2]李辉,果双双,孟春花,等.猪髓样细胞触发因子1CDR区的克隆、表达及生物活性[J].江苏农业学报,2016,(05):1100.[doi:10.3969/j.issn.1000-4440.2016.05.023]
 LI Hui,GUO Shuang-shuang,MENG Chun-hua,et al.Cloning and expression of the CDR area from swine triggering receptor expressed on myeloid cells 1 and its bioactivity[J].,2016,(06):1100.[doi:10.3969/j.issn.1000-4440.2016.05.023]
[3]李碧侠,赵芳,任守文,等.SIRT1 基因对猪卵巢颗粒细胞中生殖激素受体基因表达量的影响[J].江苏农业学报,2016,(01):123.[doi:10.3969/j.issn.1000-4440.2016.01.019 ]
 LI Bi-xia,ZHAO Fang,REN Shou-wen,et al.Role of SIRT1 gene in expression of reproductive hormone receptor genes in porcine ovarian granulosa cells[J].,2016,(06):123.[doi:10.3969/j.issn.1000-4440.2016.01.019 ]
[4]李文良,毛立,杨蕾蕾,等.稳定表达猪Viperin 的 PK-15 细胞系的构建与鉴定[J].江苏农业学报,2016,(01):128.[doi:10.3969/j.issn.1000-4440.2016.01.020]
 LI Wen-liang,MAO Li,YANG Lei-lei,et al.Construction and identification of PK-15 cell line stably expressing porcine Viperin[J].,2016,(06):128.[doi:10.3969/j.issn.1000-4440.2016.01.020]
[5]陈哲,雷明明,于建宁,等.猪RELMβ基因启动子区克隆及序列分析[J].江苏农业学报,2015,(05):1060.[doi:doi:10.3969/j.issn.1000-4440.2015.05.018]
 CHEN Zhe,LEI Ming-ming,YU Jian-ning,et al.Cloning and sequence analysis of promoter region of porcine RELMβ gene[J].,2015,(06):1060.[doi:doi:10.3969/j.issn.1000-4440.2015.05.018]
[6]彭中友,孙俊铭,李燕,等.GDF9和FST调控猪卵母细胞成熟和胚胎早期发育[J].江苏农业学报,2015,(03):583.[doi:10.3969/j.issn.1000-4440.2015.03.019]
 PENG Zhong-you,SUN Jun-ming,LI Yan,et al.Growth differentiation factor 9 and follistatin regulating porcine oocyte maturation and early embryo development[J].,2015,(06):583.[doi:10.3969/j.issn.1000-4440.2015.03.019]
[7]付言峰,李兰,Robert V. Knox,等.猪脂肪沉积和胚胎附植期FTO基因的表达及碱基突变检测[J].江苏农业学报,2018,(03):591.[doi:doi:10.3969/j.issn.1000-4440.2018.03.016]
 FU Yan-feng,LI Lan,ROBER V. Knox,et al.Detection of FTO expression and SNPs during fat deposition and embryo implantation in pigs[J].,2018,(06):591.[doi:doi:10.3969/j.issn.1000-4440.2018.03.016]
[8]赵为民,方晓敏,涂枫,等.猪单核源性巨噬细胞受FSL-1刺激后lncRNAs的鉴定与特征分析[J].江苏农业学报,2019,(02):346.[doi:doi:10.3969/j.issn.1000-4440.2019.02.015]
 ZHAO Wei-min,FANG Xiao-min,TU Feng,et al.Identification and characterization of lncRNA in porcine monocyte-derived macrophage stimulated by FSL-1[J].,2019,(06):346.[doi:doi:10.3969/j.issn.1000-4440.2019.02.015]
[9]蔡瑶,周雪珂,江朝源,等.猪肺源致病性大肠杆菌和化脓隐秘杆菌混合感染病原的分离鉴定及主要毒力因子的检测[J].江苏农业学报,2020,(01):254.[doi:doi:10.3969/j.issn.1000-4440.2020.01.036]
 CAI Yao,ZHOU Xue-ke,JIANG Chao-yuan,et al.Isolation and identification of mixed pathogens of pathogenic Escherichia coli and Trueperella pyogenes from pig lung and detection of main virulence factors[J].,2020,(06):254.[doi:doi:10.3969/j.issn.1000-4440.2020.01.036]
[10]李原野,陈世界,林华,等.猪圆环病毒3型微滴式数字PCR检测方法的建立与应用[J].江苏农业学报,2021,(02):389.[doi:doi:10.3969/j.issn.1000-4440.2021.02.015]
 LI Yuan-ye,CHEN Shi-jie,LIN Hua,et al.Establishment and application of microdrop digital PCR detection method for porcine circovirus type 3[J].,2021,(06):389.[doi:doi:10.3969/j.issn.1000-4440.2021.02.015]

备注/Memo

备注/Memo:
收稿日期:2019-03-12 基金项目:国家自然科学基金项目(31601928);江苏省农业重大新品种创制项目(PZCZ201733);江苏省农业科学院基本科研业务专项[ZX(15)4002] 作者简介:赵为民(1983-),男,湖北钟祥人,博士,副研究员,主要从事猪的抗病育种, (E-mail)zhao_weimin1983@aliyun.com 通讯作者:方晓敏,(E-mail)fxmw2000@163.com
更新日期/Last Update: 2020-01-09