参考文献/References:
[1] LEBOT V. Tropical root and tuber crops: cassava, sweet potato, yams and aroids[M].Wallingford, UK: CABI, 2009.
[2]RAO V R, MATTEWS P J, EYZAGUIRRE P B, et al. The global diversity of taro: ethnobotany and conservation[M]. Rome, Italy: Bioversity International, 2010.
[3]赵国华,陈宗道,王赟. 芋头多糖的理化性质及体内免疫调节活性研究[J]. 中国食品学报,2002,2(3):21-25.
[4]DAS A, DAS A B. Karyotype analysis of ten draught resistant cultivars of Indian taro - Colocasia esculenta cv. antiquorom Schott[J]. Nucleus, 2014, 57:113-120.
[5]GRIMALDI I M, MUTHUKUMARAN S, TOZZI G, et al. Literary evidence for taro in the ancient Mediterranean: A chronology of names and uses in a multilingual world[J]. PLoS ONE, 2018, 13(6): e0198333.
[6]柯卫东,黄新芳,李建洪,等. 我国水生蔬菜科研与生产发展概况[J]. 长江蔬菜,2015(14):33-37.
[7]KRON P, SUDA J, HUSBAND B C. Applications of flow cytometry to evolutionary and population biology[J]. Annual Review of Ecology Evolution & Systematics, 2007, 38:847-876.
[8]RABINOWICZ P D, BENNETZEN J L. The maize genome as a model for efficient sequence analysis of large plant genomes[J]. Current Opinion in Plant Biology, 2006, 9:149-156.
[9]DOLEZEL J, GREILHUBER J, SUDA J. Estimation of nuclear DNA content in plants using flow cytometry[J]. Nature Protocols, 2007, 2(9): 2233-2244.
[10]MIYASHITA T, ARAKI H, HOSHINO Y. Ploidy distribution and DNA content variations ofLoniceracaerulea (caprifoliaceae) in Japan[J]. Journal of Plant Research, 2011, 124(1): 1-9.
[11]OBIDIEGWU J, RODRIGUEZ E, ENEOBONG E. Ploidy levels of Dioscoreaalata L. germplasm determined by flow cytometry[J]. Genetic Resourcesand Crop Evolution, 2010, 57(3): 351-356.
[12]李秋实,徐江,朱英杰,等. 基于流式细胞技术的灵芝基因组大小估测[J]. 菌物学报,2013,32(5):899-906.
[13]邓果特,刘清波,蒋建雄,等. 五节芒基因组大小测定[J]. 植物遗传资源学报,2013,14(2):339-341.
[14]李祯,伊贤贵,顾宇, 等. 山樱花基因组大小的测定[J]. 南京林业大学学报(自然科学版),2014,38(S1):17-19.
[15]汪艳,肖媛,刘伟,等. 流式细胞仪检测高等植物细胞核DNA含量的方法[J]. 植物科学学报,2015,33(1):126-131.
[16]ZHANG T Z, HU Y, JIANG W, et al. Sequencing of allotetraploid cotton (Gossypiumhirsutum L. acc. TM-1) provides a resource for fiber improvemen[J]. Nature Biotechnology, 2015, 33(5): 531-537.
[17]唐其,马小军,莫长明,等. 罗汉果全基因组Survey分析[J]. 广西植物,2015,35(6):786-791.
[18]唐玉娟,黄国弟 ,罗世杏,等. 芒果2个不同花芽分化时期转录组分析[J]. 南方农业学报 , 2018,49(7):1257-1264.
[19]CHEN S L, XU J, LIU C, et al. Genome sequence of the model medicinal mushroom Ganodermalucidum[J]. Nature Communications, 2012, 3(2): 913-921.
[20]XU H,SONG J, LUO H, et al. Analysis of the gnome sequence of the medicinal plant Salvia miltiorrhiza[J]. Molecular Plant, 2016, 9(6): 949-952.
[21]WEI Z, HU Y Y, SUI Z H, et al. Genome survey sequencing and genetic background characterization of gracilariopsis lemaneiformis(Rhodophyta) based on next-generation sequencing[J]. PLoS ONE, 2013, 8:e69909.
[22]张小燕,刘志香,廖保生,等. 基于本草基因组学应用流式细胞术和高通量测序技术检测人参基因组大小[J].世界科学技术—中医药现代化,2017,19(10):1724-1728.
[23]COATES D J, YEN D E, GAFFEY P M. Chromosome variation in taro, Colocasia esculenta: implications for origin in the Pacific[J]. Cytologia, 1988, 53:551-560.
[24]曹利民,龙春林.中国芋属植物染色体数目及5个种的核型报道[J].云南植物研究,2004,26(3):310-316.
[25]LI H, ZHU G H, BOYCE P C. Flora of China[M].Louris: Missouri Botanical Garden Press, 2010:71-75.
[26]WANG L, YIN J, ZHANG P, et al. De novo assembly and characterization of transcriptome and microsatellite marker development for taro [Colocasia esculenta (L.) Schott.][J]. International Journal of Genetics & Molecular Biology, 2017, 9:26-36.
[27]TIAN X, ZHOU X, GONG N. Applications of flow cytometry in plant research-Analysis of nuclear DNA content and ploidy level in plant cells[J]. Chinese Agricultural Science Bulletin, 2011, 27:21-27.
[28]DOLEZEL J, BARTOS J, VOGLMAYR H, et al. Nuclear DNA content and genome size of trout and human[J]. Cytometry A, 2003, 51:127-128.
[29]HAAS B J, SALZBERG S L, ZHU W, et al. Automated eukaryotic gene structure annotation using EvidenceModeler and the program to assemble spliced alignments[J]. Genome Biology, 2008, 9: 7.
[30]BURGE C, KARLIN S. Prediction of complete gene structures in human genomic DNA[J]. Journal of Molecular Biology, 1997, 268: 78-94.
[31]MAJOROS W H, PERTEA M, SALZBERG S L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders[J]. Bioinformatics, 2004, 20:2878-2879.
[32]BLANCO E, PARRA G, GUIGO R. Using geneid to identify genes[M]. Current Protocols in Bioinformatics, Unit 4.3. New York: John Wiley & Sons Inc, 2007.
[33]KORF I. Gene finding in novel enomes[J]. BMC Bioinformatics, 2004, 5:59.
[34]JENS K, MICHAEL W, ERICKSON J L, et al. Using intron position conservation for homology-based gene prediction[J]. Nucleic Acids Research, 2016, 44:89-89.
[35]LETUNIC I, COPLEY R R, SCHMIDT S, et al. SMART 4.0: towards genomic data integration[J]. Nucleic Acids Research, 2004, 32:142-144.
[36]黄新芳,柯卫东,刘义满,等. 芋种质资源染色体倍性鉴定[J]. 中国蔬菜,2012(16):42-46.
[37]ISSHIKIS, NAKADAM, NAKAMURAN, et al. Genetic systems and variations of isozymes in wild taro (Colocasia esculenta Schott) from Bangladesh[J]. Journal of the Japanese Society for Horticultural Science, 1995, 64(1): 113-119.
[38]HUANG Z H, XU J, XIAO S M, et al. Comparative optical genome analysis of two pangolin species: Manis pentadactyla and Manis javanica[J]. Giga science, 2016, 5(1): 1-5.
[39]TAMIRU M, NATSUME S, TAKAGI H, et al. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination[J]. BMC Biology, 2017, 15:86.
[40]AIRD D, ROSS M G, CHEN W S, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries[J]. Genome Biology, 2011, 12:18.
[41]ELLEGREN H. Genome sequencing and population genomics in non-model organisms[J]. Trends in Ecology & Evolution, 2014, 29:51-63.