[1]张惠铭,喻勇飞,卢辰,等.组蛋白甲基化对酿酒酵母铁离子代谢平衡基因表达的影响[J].江苏农业学报,2019,(06):1292-1298.[doi:doi:10.3969/j.issn.1000-4440.2019.06.004]
 ZHANG Hui-ming,YU Yong-fei,LU Chen,et al.Effects of histone methylation on the expression of iron homeostasis genes in Saccharomyces cerevisiae[J].,2019,(06):1292-1298.[doi:doi:10.3969/j.issn.1000-4440.2019.06.004]
点击复制

组蛋白甲基化对酿酒酵母铁离子代谢平衡基因表达的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
1292-1298
栏目:
遗传育种·生理生化
出版日期:
2019-12-31

文章信息/Info

Title:
Effects of histone methylation on the expression of iron homeostasis genes in Saccharomyces cerevisiae
作者:
张惠铭喻勇飞卢辰薛勇
(江苏海洋大学江苏省海洋药物活性分子筛选重点实验室/江苏省海洋生物产业技术协同创新中心,江苏连云港222005)
Author(s):
ZHANG Hui-mingYU Yong-feiLU ChenXUE Yong
(Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University/Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China)
关键词:
表观遗传铁离子代谢平衡组蛋白甲基化酿酒酵母
Keywords:
epigeneticsiron ion homeostasishistone methylationSaccharomyces cerevisiae
分类号:
Q36
DOI:
doi:10.3969/j.issn.1000-4440.2019.06.004
文献标志码:
A
摘要:
为了解组蛋白化学修饰在铁离子代谢平衡相关基因表达调控中的作用,在酿酒酵母中通过敲除铁硫簇合成基因YFH1激活铁离子代谢平衡相关基因,并在此基础上敲除组蛋白甲基化酶基因,然后通过RNA测序检测组蛋白甲基化在铁离子代谢平衡相关基因激活中的作用。结果显示,酿酒酵母中组蛋白甲基化的缺失并没有显著影响铁离子代谢平衡通路相关基因的激活,表明组蛋白甲基化在铁离子代谢平衡基因的激活调控中并不是必须的。
Abstract:
To understand the role of histone modifications in the transcriptional regulation of iron homeostasis genes, the ferroxidase gene YFH1, which promoted Fe-S cluster assembly in Saccharomyces cerevisiae, was knocked out to activate the expression of iron homeostasis genes. In addition, the role of histone methylations in the activation of these genes was investigated through RNA-Seq, with the presence or absence of histone methylations. Results showed that loss of histone methylation did not significantly affect the activation of genes involved in iron homeostasis, indicating that histone methylation was not necessary for the activation of iron homeostasis genes.

参考文献/References:

[1]DLOUHY A C, OUTTEN C E. The iron metallome in eukaryotic organisms[J]. Met Ions Life Sci, 2013,12:241-278.
[2]STEHLING O, LILL R. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases[J/OL]. Cold Spring Harb Perspect Biol, 2013, 5: a011312
[2019-05-02]. https://cshperspectives.cshlp.org/content/5/8/a011312
[3]XUE Y, SCHMOLLINGER S, ATTAR N, et al. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis[J]. J Biol Chem, 2017,292:13197-13204.
[4]MENEGHINI R. Iron homeostasis, oxidative stress, and DNA damage[J]. Free Radic Biol Med, 1997,23:783-792.
[5]BRAUGHLER J M, DUNCAN L A, CHASE R L. The involvement of iron in lipid peroxidation, Importance of ferric to ferrous ratios in initiation[J]. J Biol Chem, 1986,261:10282-10289.
[6]ZHANG C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control[J]. Protein Cell, 2014,5:750-760.
[7]GOZZELINO R, AROSIO P. The importance of iron in pathophysiologic conditions[J]. Front Pharmacol, 2015,6:26.
[8]GOZZELINO R, AROSIO P. Iron homeostasis in health and disease[J]. Int J Mol Sci, 2016,17: 130.
[9]PHILPOTT C C. Iron uptake in fungi: a system for every source[J]. Biochimica et Biophysica Acta, 2006,1763:636-645.
[10]PHILPOTT C C, PROTCHENKO O. Response to iron deprivation in Saccharomyces cerevisiae[J]. Eukaryot Cell, 2008,7:20-27.
[11]RUTHERFORD J C, OJEDA L, BALK J, et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis[J]. J Biol Chem, 2005,280:10135-10140.
[12]YAMAGUCHI-IWAI Y, DANCIS A, KLAUSNER R D. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae[J]. The EMBO Journal, 1995,14:1231-1239.
[13]BABCOCK M, DE SILVA D, OAKS R, et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin[J]. Science, 1997,276:1709-1712.
[14]VAN LEEUWEN F, VAN STEENSEL B. Histone modifications: from genome-wide maps to functional insights[J]. Genome Biol, 2005,6:113.
[15]RANDO O J, CHANG H Y. Genome-wide views of chromatin structure[J]. Annu Rev Biochem,2009,78:245-271.
[16]TAO Y, WU Q, GUO X, et al. MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice[J]. Br J Haematol, 2014,166:279-291.
[17]FREITAG M. Histone methylation by SET domain proteins in fungi[J]. Annu Rev Microbiol,2017,71:413-439.
[18]BLACK J C, VAN RECHEM C, WHETSTINE J R. Histone lysine methylation dynamics: establishment, regulation, and biological impact[J]. Mol Cell,2012,48:491-507.
[19]BRACHMANN C B, DAVIES A, COST G J, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications[J]. Yeast, 1998,14:115-132.
[20]AZAD G K, SINGH V, GOLLA U, et al. Depletion of cellular iron by curcumin leads to alteration in histone acetylation and degradation of Sml1p in Saccharomyces cerevisiae[J]. PLoS ONE, 2013,8:e59003.
[21]JO W J, KIM J H, OH E, et al. Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae[J]. BMC Genomics,2009,10:130.

备注/Memo

备注/Memo:
收稿日期:2019-05-02 作者简介:张惠铭(1991-),男,江苏连云港人,硕士研究生,研究方向为基因组学分析。(E-mail)zhmofcpu@sina.com 通讯作者:卢辰,(E-mail) luchen@hhit.edu.cn
更新日期/Last Update: 2020-01-09