参考文献/References:
[1]TURNER J G, ELLIS C, DEVOTO A. The jasmonate signal pathway[J]. Plant Cell, 2002, 14: 153-164.
[2]BARI R, JONES J D. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009, 69(4): 473-488.
[3]LI L, ZHAO Y, MCCAIG B C, et al. The tomato homolog of Coronatine insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[J]. Plant Cell, 2004, 16: 126-143.
[4]REINBOTHE C, SPRINGER A, SAMOL I, et al. Plant oxylipins: role of jasmonic acid during programmed cell death,defence and leaf senescence[J]. Febs Journal, 2009, 276(17): 4666-4681.
[5]CHEHAB EW, KASPI R, SAVCHENKO T, et al.Distinct roles of jasmonates and aldehydes in plant defense responses[J]. PLoS ONE, 2008, 3:1904.
[6]WASTERNACK C, STENZEL I, HAUSE B, et al. The wound response in tomato-role of jasmonic acid[J]. Journal of Plant Physiol, 2006, 163: 297-306.
[7]SONG S, QI T, HUANG H, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. The Plant Cell, 2011, 23(3): 1000-1013.
[8]WASTERNACK C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development[J].Ann Bot, 2007, 100: 681-697.
[9]DEVOTO A, TURNER J G. Regulation of jasmonate-mediated plant responses in arabidopsis[J]. Annals of Botany, 2003, 92: 329-337.
[10]YAN J, LI H, LI S, et al. The Arabidopsis F-box protein Coronatine insensitive1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway[J]. The Plant Cell, 2013, 25(2): 486-498.
[11]XIE D X, FEYS B F, JAMES S, et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility [J]. Science, 1998, 280(5366): 1091-1094.
[12]THINES B, KATSIR L, MELOTTO M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154): 661-665.
[13]YAN Y, STOLZ S, CHETELAT A, et al. A downstream mediator in the growth epression limb of the jasmonate pathway[J]. The Plant Cell, 2007, 19(8): 2470-2483.
[14]YE H, DU H, TANG N, et al. Identification and expression profiling analysis of TITY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009, 71(3): 291-305.
[15]ZHU D, BAI X, LUO X, et al. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress[J]. Plant Cell Reports, 2013, 32(2): 263-272.
[16]ZHANG Y C, GAO M, SINGER S D, et al. Genome-wide identification and analysis of the TIFY gene family in grape[J]. PLoS ONE, 2012, 7(9):e44465.
[17]CHUNG H S, KOO A J, GAO X, et al. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory[J]. Plant Physiology, 2008, 146(3):952-964.
[18]KAZAN K, MANNERS J M. JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends in Plant Science, 2012, 17(1):22-31.
[19]UJI Y, TANIGUCHI S, TAMAOKI D, et al. Overexpression of OsMYC2 results in the up-regulation of early JA-rresponsive genes and bacterial blight resistance in rice[J]. Plant Cell Physiology, 2016, 57(9): 1814-1827.
[20]JI C Y, JIN R, XU Z, et al. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato[J]. BMC Plant Biology, 2017, 17(1):139.
[21]KANG L, JI C Y, KIM S H, et al. Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants. [J]. Plant Physiology and Biochemistry,2017, 117: 24-33.
[22]KAZAN K, J M MANNERS. JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends in Plant Science, 2012, 17(1): 22-31.
[23]NAVARRO L, BARI R, ACHARD P, et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling[J]. Current Biology, 2008, 18(9): 650-655.
相似文献/References:
[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(05):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(05):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(05):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(05):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(05):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(05):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(05):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[10]李春华,汪吉东,张辉,等.磷缺乏对不同甘薯品种根系生长及磷素吸收的影响[J].江苏农业学报,2019,(01):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]
LI Chun-hua,WANG Ji-dong,ZHANG Hui,et al.Responses of root growth and phosphorus uptake for sweet potatoes under low phosphorus supply[J].,2019,(05):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]