[1]杨冬静,孙厚俊,谢逸萍,等.甘薯等8种植物JAZ1基因的生物信息学分析[J].江苏农业学报,2019,(05):1021-1027.[doi:doi:10.3969/j.issn.1000-4440.2019.05.003]
 YANG Dong-jing,SUN Hou-jun,XIE Yi-ping,et al.Bioinformatics analysis of JAZ1 gene from eight plants including sweetpotato[J].,2019,(05):1021-1027.[doi:doi:10.3969/j.issn.1000-4440.2019.05.003]
点击复制

甘薯等8种植物JAZ1基因的生物信息学分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1021-1027
栏目:
遗传育种·生理生化
出版日期:
2019-10-31

文章信息/Info

Title:
Bioinformatics analysis of JAZ1 gene from eight plants including sweetpotato
作者:
杨冬静12孙厚俊1谢逸萍1张成玲1马居奎1李宗芸2马代夫1
(1.江苏徐淮地区徐州农业科学研究所/农业部甘薯生物学与遗传育种重点实验室,江苏徐州221131;2.江苏师范大学生命科学学院,江苏徐州221116)
Author(s):
YANG Dong-jing12SUN Hou-jun1XIE Yi-ping1ZHANG Cheng-ling1MA Ju-kui1LI Zong-yun2MA Dai-fu1
(1.Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province/Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China;2.Department of Life Science, Jiangsu Normal University, Xuzhou 221116, China)
关键词:
甘薯JAZ1磷酸化位点功能结构域亚细胞定位
Keywords:
sweetpotato JAZ1phosphorylation siteFunctional domainssubcellular localization
分类号:
S531.035.3
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.003
文献标志码:
A
摘要:
JAZ(Jasmonate ZIM-domain)蛋白是植物中茉莉酸信号调控途径中重要的负调控因子,它在调控植物发育、营养生长、衰老、抗盐、抗旱以及抗病等过程中起着至关重要的作用。为了对甘薯等JAZ1基因的生物信息学进行分析并对其功能进行预测,本研究以NCBI数据库中收集的8种植物JAZ1蛋白氨基酸序列为试验数据来源,采用系列生物信息学分析软件对甘薯等8种JAZ1蛋白的氨基酸组成及其理化性质、蛋白质亲疏水性、磷酸化位点、二级结构元件和含量、跨膜结构域、信号肽、蛋白质亚细胞定位、功能结构域进行预测和分析,并对8种植物JAZ1蛋白氨基酸序列进行多重比较和蛋白质系统进化树进行构建和分析。结果表明,8种植物JAZ1蛋白的氨基酸残基数目介于180~294;相对分子量介于19 815 670~31 550 050;理论等电点均为碱性等电点;8种植物JAZ1蛋白的主要氨基酸为丝氨酸、脯氨酸、赖氨酸和苏氨酸;稳定性预测结果表明8种植物JAZ1蛋白均为非稳定性蛋白质;磷酸化位点预测分析结果表明8种植物JAZ1蛋白磷酸化位点数量最多为丝氨酸,其次为苏氨酸;根据亲疏水性预测分析结果推测8种植物JAZ1蛋白均为亲水性蛋白质;信号肽和跨膜结构域预测结果显示这些蛋白质均为非分泌蛋白质不具有信号肽,没有明显的跨膜结构域;JAZ1蛋白二级结构元件主要为不规则卷曲,其次为α-螺旋和延伸链;亚细胞定位预测结果显示该蛋白质主要定位于细胞核;结构域预测结果表明供试8种植物JAZ1蛋白均含有JAZ蛋白家族典型的TIFY和CCT_2功能结构域;氨基酸序列多重比对和蛋白质系统进化树分析结果表明甘薯JAZ1与长春花JAZ1亲缘关系最近。本研究可为甘薯JAZ1基因功能研究和甘薯性状定向改良奠定理论基础。
Abstract:
Jasmonate ZIM-domain(JAZ) protein is an important negative regulator of jasmonic acid signaling pathway in plants. It plays an important role in regulating plant development, vegetative growth, senescence, salt resistance, drought resistance and disease resistance. In order to analyze the biological information of several JAZ1 gene and predict its function, JAZ1 amino acid sequences of eight plants were collected from NCBI database, a series of bioinformatics analysis softwares were used for prediction and analysis of the JAZ1 amino acid composition and physicochemical properties, hydrophobicity, protein phosphorylation sites, transmembrane domain and signal peptide, protein subcellular localization and functional domains. Multiple sequences alignment and phylogenetic tree construction were carried out to analyze the genetic relationship among the JAZ1 proteins from eight plants. The results showed that the number of amino acid residues of JAZ1 proteins in eight plants ranged from 180 to 294, the molecular weight ranged from 19 815 670 to 31 550 050, and the theoretical isoelectric points were alkaline isoelectric point. The main amino acids of JAZ1 protein were serine, proline, lysine and threonine. Stability prediction results showed that the JAZ1 proteins were unstable protein. Results from the eight plants of phosphorylation sites prediction analysis showed that the main phosphorylation site of JAZ1 proteins from the eight plants were serine, followed by threonine. Hydrophobicity-hydrophilicity prediction result indicated that all the JAZ1 proteins from the eight plants were hydrophilic proteins. Signal peptide and transmembrane domain prediction results showed that these proteins were non secretory proteins without signal peptide and no obvious transmembrane domain was detected. Random coil was the most important element in JAZ1 secondary structure, followed by α-helix and extended chain. Subcellular localization prediction results showed that JAZ1 proteins were mainly localized in the nucleus. Functional domain prediction results showed that the JAZ1 proteins from the eight plants contained two typical functional domains of the JAZ protein family, TIFY and CCT_2. Multiple alignment of amino acid sequences and phylogenetic tree analysis results showed that IbJAZ1 had the highest genetic relationship with CrJAZ1. This study could provide a theoretical basis for functional study of IbJAZ1 and directional improvement of sweetpotato.

参考文献/References:

[1]TURNER J G, ELLIS C, DEVOTO A. The jasmonate signal pathway[J]. Plant Cell, 2002, 14: 153-164.
[2]BARI R, JONES J D. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009, 69(4): 473-488.
[3]LI L, ZHAO Y, MCCAIG B C, et al. The tomato homolog of Coronatine insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[J]. Plant Cell, 2004, 16: 126-143.
[4]REINBOTHE C, SPRINGER A, SAMOL I, et al. Plant oxylipins: role of jasmonic acid during programmed cell death,defence and leaf senescence[J]. Febs Journal, 2009, 276(17): 4666-4681.
[5]CHEHAB EW, KASPI R, SAVCHENKO T, et al.Distinct roles of jasmonates and aldehydes in plant defense responses[J]. PLoS ONE, 2008, 3:1904.
[6]WASTERNACK C, STENZEL I, HAUSE B, et al. The wound response in tomato-role of jasmonic acid[J]. Journal of Plant Physiol, 2006, 163: 297-306.
[7]SONG S, QI T, HUANG H, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. The Plant Cell, 2011, 23(3): 1000-1013.
[8]WASTERNACK C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development[J].Ann Bot, 2007, 100: 681-697.
[9]DEVOTO A, TURNER J G. Regulation of jasmonate-mediated plant responses in arabidopsis[J]. Annals of Botany, 2003, 92: 329-337.
[10]YAN J, LI H, LI S, et al. The Arabidopsis F-box protein Coronatine insensitive1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway[J]. The Plant Cell, 2013, 25(2): 486-498.
[11]XIE D X, FEYS B F, JAMES S, et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility [J]. Science, 1998, 280(5366): 1091-1094.
[12]THINES B, KATSIR L, MELOTTO M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154): 661-665.
[13]YAN Y, STOLZ S, CHETELAT A, et al. A downstream mediator in the growth epression limb of the jasmonate pathway[J]. The Plant Cell, 2007, 19(8): 2470-2483.
[14]YE H, DU H, TANG N, et al. Identification and expression profiling analysis of TITY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009, 71(3): 291-305.
[15]ZHU D, BAI X, LUO X, et al. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress[J]. Plant Cell Reports, 2013, 32(2): 263-272.
[16]ZHANG Y C, GAO M, SINGER S D, et al. Genome-wide identification and analysis of the TIFY gene family in grape[J]. PLoS ONE, 2012, 7(9):e44465.
[17]CHUNG H S, KOO A J, GAO X, et al. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory[J]. Plant Physiology, 2008, 146(3):952-964.
[18]KAZAN K, MANNERS J M. JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends in Plant Science, 2012, 17(1):22-31.
[19]UJI Y, TANIGUCHI S, TAMAOKI D, et al. Overexpression of OsMYC2 results in the up-regulation of early JA-rresponsive genes and bacterial blight resistance in rice[J]. Plant Cell Physiology, 2016, 57(9): 1814-1827.
[20]JI C Y, JIN R, XU Z, et al. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato[J]. BMC Plant Biology, 2017, 17(1):139.
[21]KANG L, JI C Y, KIM S H, et al. Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants. [J]. Plant Physiology and Biochemistry,2017, 117: 24-33.
[22]KAZAN K, J M MANNERS. JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends in Plant Science, 2012, 17(1): 22-31.
[23]NAVARRO L, BARI R, ACHARD P, et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling[J]. Current Biology, 2008, 18(9): 650-655.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(05):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(05):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(05):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(05):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(05):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
 MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(05):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
 YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(05):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[10]李春华,汪吉东,张辉,等.磷缺乏对不同甘薯品种根系生长及磷素吸收的影响[J].江苏农业学报,2019,(01):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]
 LI Chun-hua,WANG Ji-dong,ZHANG Hui,et al.Responses of root growth and phosphorus uptake for sweet potatoes under low phosphorus supply[J].,2019,(05):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]

备注/Memo

备注/Memo:
收稿日期:2019-01-31 基金项目:国家现代农业产业技术体系建设专项(CARS-10-B15);徐州市农业科学院科研基金项目;农业部重点实验室开放性课题(XM2017001);江苏师范大学研究生创新项目(KYCX17-1620);江苏省政府留学奖学金项目(JS-2014-120) 作者简介:杨冬静(1983-),女,四川射洪人,博士研究生,助理研究员,主要从事植物病理学研究。(E-mail)njnd831215@126.com 通讯作者:马代夫,(E-mail)daifuma@163.com
更新日期/Last Update: 2019-11-11