参考文献/References:
[1]管珊红,曾小军,许晶晶,等. 江西省水稻产业发展现状与对策[J].南方农业学报, 2017,48(1):189-196.
[2]孙伟,郑崇珂,解丽霞,等. 水稻对盐胁迫的生理和分子反应研究进展[J]. 山东农业科学, 2016,48(4):148-153.
[3]谢丽娟,应义斌,于海燕,等. 近红外光谱分析技术在蔬菜品质无损检测中的应用研究进展[J].光谱学与光谱分析, 2007, 27(6): 1131-1135.
[4]XU H R, YU P, FU X P,et al.On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy[J].Journal of Zhejiang University-SCIENCE B,2009, 10(2): 126-132.
[5]LI X Y, HE Y, FANG H. Non-destructive discrimination of Chinese bayberry varieties using Vis/NIR spectroscopy[J]. Journal of Food Engineering., 2007, 81(2): 357-363.
[6]曾云龙,赵敏,张敏,等. 近红外荧光传感法测定中药材中赭曲霉毒素A[J]. 发光学报, 2019, 40(1): 115-121.
[7]蒋霞,张晓,白铁成,等. 近红外光谱技术结合PLS和SPA检测鲜冬枣表面农药残留量的方法[J].江苏农业科学,2018,46(2):146-149.
[8]李毅念,姜丹,刘璎瑛,等. 基于近红外光谱的杂交水稻种子发芽率测试研究[J]. 光谱学与光谱分析, 2014, 34(6): 1528-1532.
[9]戴子云,梁小红,张利娟,等. 近红外光谱技术的结缕草种子发芽率研究[J]. 光谱学与光谱分析, 2013, 33(10): 2642-2645.
[10]朱银,颜伟,杨欣,等. 基于近红外光谱的小麦种子发芽率测试[J]. 江苏农业科学, 2015, 43(12): 111-113.
[11]何勇. 光谱及成像技术在农业中的应用[M]. 北京:科学出版社,2016.
[12]CENTNER V, MASSART D L, DE NOORD O E,et al. Elimination of uninformative variables for multivariate calibration[J]. Analytical Chemistry, 1996, 68(21): 3851-3858.
[13]胡晓男,彭云发,罗华平,等. 无信息变量消除法在筛选南疆红枣总酸近红外特征波长中的应用[J]. 食品工业, 2015(5): 232-235.
[14]李倩倩,田旷达,李祖红,等. 无信息变量消除法变量筛选优化烟草中总氮和总糖的定量模型[J]. 分析化学, 2013, 41(6): 917-921.
[15]董新红,宋明. 种子劣变的原因及其防止与修复[J]. 中国种业, 2002(1): 39-40.
[16]国家技术监督局. 农作物种子检验规程——发芽试验:GB/T3543.4—1995[S]. 北京:中国标准出版社,1995:54-73.
[17]POLANSKI J, GIELECIAK R. The comparative molecular surface analysis (CoMSA) with modified uniformative variable elimination-PLS (UVE-PLS) method: application to the steroids binding the aromatase enzyme[M].2003,43:656-666.
[18]褚小立,袁洪福,陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528-542.
[19]TOBIAS R. Chemometrics: a practical guide[J]. Technometrics, 1998, 41(4): 375-376.
[20]刘翠玲, 孙晓荣, 吴静珠, 等. 基于NIR的小麦粉异常样本剔除方法研究[J]. 农机化研究, 2014(4):46-48.
[21]尹宝全, 史银雪, 孙瑞志. 近红外光谱分析中的一种基于XY变量联合的异常样本剔除算法[J]. 中国科学技术大学学报, 2016,46(3):208-214.
相似文献/References:
[1]张平平,张瑜,唐果,等.近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,(06):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
ZHANG Ping-ping,ZHANG Yu,TANG Guo,et al.Measurement of SDS-unextractable polymeric protein content in wheat flour based on near-infrared spectroscopy (NIRS) technique[J].,2017,(05):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
[2]仇逊超.红松仁脂肪的近红外光谱定量检测[J].江苏农业学报,2018,(03):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
QIU Xun-chao.Quantitative detection of fat in peeled Korean pine seeds using near infrared spectroscopy[J].,2018,(05):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
[3]彭雅玲,邱雪,张海红,等.近红外光谱技术检测灵武长枣果肉硬度和贮藏时间[J].江苏农业学报,2019,(01):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
PENG Ya-ling,QIU Xue,ZHANG Hai-hong,et al.Near-infrared spectroscopy for the determination of hardness and storage time of jujube fruit[J].,2019,(05):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
[4]张津源,张德贤,张苗.基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J].江苏农业学报,2019,(04):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
ZHANG Jin yuan,ZHANG De xian,ZHANG Miao.Prediction and analysis of wheat protein content by nearinfrared spectroscopy based on successive projections algorithm[J].,2019,(05):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
[5]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(05):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[6]黄琼,杨红云,万颖.基于特征数据的水稻种子分类识别方法[J].江苏农业学报,2021,(01):8.[doi:doi:10.3969/j.issn.1000-4440.2021.01.002]
HUANG Qiong,YANG Hong-yun,WAN Ying.Classification and recognition method of rice seeds based on feature data[J].,2021,(05):8.[doi:doi:10.3969/j.issn.1000-4440.2021.01.002]
[7]方瑶,谢天铧,郭渭,等.基于近红外光谱的金鲳鱼新鲜度快速检测技术[J].江苏农业学报,2021,(01):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
FANG Yao,XIE Tian-hua,GUO Wei,et al.Rapid detection technology of pomfret freshness based on near infrared spectroscopy[J].,2021,(05):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
[8]谢文涌,柴琴琴,林旎,等.基于Stacking集成学习的马兜铃酸及其类似物鉴别[J].江苏农业学报,2021,(02):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
XIE Wen-yong,CHAI Qin-qin,LIN Ni,et al.Discrimination of aristolochic acid and its analogues based on stacking ensemble learning[J].,2021,(05):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
[9]沈广辉,曹瑶瑶,刘馨,等.近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
SHEN Guang-hui,CAO Yao-yao,LIU Xin,et al.Identification of Fusarium damaged kernels using near infrared hyperspectral imaging and characteristic bands selection[J].,2021,(05):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
[10]仇逊超,张春越,张怡卓,等.流形学习在红松籽仁蛋白质含量近红外检测中的应用[J].江苏农业学报,2023,(01):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
QIU Xun-chao,ZHANG Chun-yue,ZHANG Yi-zhuo,et al.Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J].,2023,(05):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]