[1]曲歌,陈争光,张庆华.基于无信息变量消除法的水稻种子发芽率测定[J].江苏农业学报,2019,(05):1015-1020.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
 QU Ge,CHEN Zheng-guang,ZHANG Qing-hua.Study on germination rate of rice seed based on uninformation variable elimination method[J].,2019,(05):1015-1020.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
点击复制

基于无信息变量消除法的水稻种子发芽率测定()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1015-1020
栏目:
遗传育种·生理生化
出版日期:
2019-10-31

文章信息/Info

Title:
Study on germination rate of rice seed based on uninformation variable elimination method
作者:
曲歌1陈争光1张庆华2
(1.黑龙江八一农垦大学电气与信息学院,黑龙江大庆163319;2.大庆技师学院计算机工程系,黑龙江大庆163254)
Author(s):
QU Ge1CHEN Zheng-guang1ZHANG Qing-hua2
(1.College of Electrical and Information Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China;2.Department of Computer Engineer, Daqing Technician College, Daqing 163254, China)
关键词:
水稻种子近红外光谱蒙特卡洛交叉验证无信息变量消除法发芽率
Keywords:
rice seed near infrared spectroscopy Monte Carlo cross validation uninformation variable elimination germination rate
分类号:
S339.3+1;S511
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.002
文献标志码:
A
摘要:
为了解决常规的水稻种子发芽率测定方法存在的试验周期长且操作繁琐等问题,实现水稻种子发芽率的快速检测。本研究以黑龙江省五常市五优稻四号粳稻种子为研究对象,首先将7组种子样本(每组60个样本,共计420个样本)置于温度为45 ℃,湿度为90%的环境中分别进行为期0 d、1 d、2 d、3 d、4 d、5 d、6 d的不同时段的人工老化,然后采集每个水稻种子样本的光谱数据后进行发芽试验。对光谱数据使用蒙特卡洛交叉验证法进行异常样本剔除,并应用UVE法对全光谱数据进行特征波长选择,使光谱数据由全光谱的1 845个数据点缩减为524个数据点,最后建立PLSR预测模型。所建模型的预测集决定系数R2为0.817 0、RMSEP为2.183 0。试验结果表明,经UVE法降维后建立PLSR模型的各项参数均优于全光谱模型,因此,UVE特征波长选择算法为提高水稻种子发芽率测定模型的预测能力提供了一种新的途径。
Abstract:
In order to solve the problems of long test period and complicated operation of conventional methods for determining germination rate of rice seeds, a method of rapid detection of germination rate of rice seeds was put forward. In this study, the seeds of japonica rice Wuyou No.4 in Wuchang City of Heilongjiang province were taken as the research object. Firstly, seven groups of seed samples (60 samples in each group and 420 samples in total) were placed at a temperature of 45 ℃ and humidity of 90% for artificial aging at different time periods of 0 d, 1 d, 2 d, 3 d, 4 d, 5 d and 6 d, respectively. Secondly, the germination experiment was carried out after collecting the spectral data of each sample of rice seeds. Monte Carlo cross validation method was used to remove abnormal samples of spectral data, and UVE method was used to select the characteristic wavelength of the whole spectrum data. The spectral data were reduced from 184 5 data points to 524 data points. Finally, PLSR prediction model was established based on the 524 data points. The predictive set determination coefficient R2 of the model was 0.817 0 and RMSEP was 2.183 0. The results showed that the parameters of PLSR model after dimension reduction by UVE method were better than those of full spectrum model. Therefore, the UVE characteristic wavelength selection algorithm provides a new way to improve the prediction ability of rice seed germination rate measurement model.

参考文献/References:

[1]管珊红,曾小军,许晶晶,等. 江西省水稻产业发展现状与对策[J].南方农业学报, 2017,48(1):189-196.
[2]孙伟,郑崇珂,解丽霞,等. 水稻对盐胁迫的生理和分子反应研究进展[J]. 山东农业科学, 2016,48(4):148-153.
[3]谢丽娟,应义斌,于海燕,等. 近红外光谱分析技术在蔬菜品质无损检测中的应用研究进展[J].光谱学与光谱分析, 2007, 27(6): 1131-1135.
[4]XU H R, YU P, FU X P,et al.On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy[J].Journal of Zhejiang University-SCIENCE B,2009, 10(2): 126-132.
[5]LI X Y, HE Y, FANG H. Non-destructive discrimination of Chinese bayberry varieties using Vis/NIR spectroscopy[J]. Journal of Food Engineering., 2007, 81(2): 357-363.
[6]曾云龙,赵敏,张敏,等. 近红外荧光传感法测定中药材中赭曲霉毒素A[J]. 发光学报, 2019, 40(1): 115-121.
[7]蒋霞,张晓,白铁成,等. 近红外光谱技术结合PLS和SPA检测鲜冬枣表面农药残留量的方法[J].江苏农业科学,2018,46(2):146-149.
[8]李毅念,姜丹,刘璎瑛,等. 基于近红外光谱的杂交水稻种子发芽率测试研究[J]. 光谱学与光谱分析, 2014, 34(6): 1528-1532.
[9]戴子云,梁小红,张利娟,等. 近红外光谱技术的结缕草种子发芽率研究[J]. 光谱学与光谱分析, 2013, 33(10): 2642-2645.
[10]朱银,颜伟,杨欣,等. 基于近红外光谱的小麦种子发芽率测试[J]. 江苏农业科学, 2015, 43(12): 111-113.
[11]何勇. 光谱及成像技术在农业中的应用[M]. 北京:科学出版社,2016.
[12]CENTNER V, MASSART D L, DE NOORD O E,et al. Elimination of uninformative variables for multivariate calibration[J]. Analytical Chemistry, 1996, 68(21): 3851-3858.
[13]胡晓男,彭云发,罗华平,等. 无信息变量消除法在筛选南疆红枣总酸近红外特征波长中的应用[J]. 食品工业, 2015(5): 232-235.
[14]李倩倩,田旷达,李祖红,等. 无信息变量消除法变量筛选优化烟草中总氮和总糖的定量模型[J]. 分析化学, 2013, 41(6): 917-921.
[15]董新红,宋明. 种子劣变的原因及其防止与修复[J]. 中国种业, 2002(1): 39-40.
[16]国家技术监督局. 农作物种子检验规程——发芽试验:GB/T3543.4—1995[S]. 北京:中国标准出版社,1995:54-73.
[17]POLANSKI J, GIELECIAK R. The comparative molecular surface analysis (CoMSA) with modified uniformative variable elimination-PLS (UVE-PLS) method: application to the steroids binding the aromatase enzyme[M].2003,43:656-666.
[18]褚小立,袁洪福,陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528-542.
[19]TOBIAS R. Chemometrics: a practical guide[J]. Technometrics, 1998, 41(4): 375-376.
[20]刘翠玲, 孙晓荣, 吴静珠, 等. 基于NIR的小麦粉异常样本剔除方法研究[J]. 农机化研究, 2014(4):46-48.
[21]尹宝全, 史银雪, 孙瑞志. 近红外光谱分析中的一种基于XY变量联合的异常样本剔除算法[J]. 中国科学技术大学学报, 2016,46(3):208-214.

相似文献/References:

[1]张平平,张瑜,唐果,等.近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,(06):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
 ZHANG Ping-ping,ZHANG Yu,TANG Guo,et al.Measurement of SDS-unextractable polymeric protein content in wheat flour based on near-infrared spectroscopy (NIRS) technique[J].,2017,(05):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
[2]仇逊超.红松仁脂肪的近红外光谱定量检测[J].江苏农业学报,2018,(03):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
 QIU Xun-chao.Quantitative detection of fat in peeled Korean pine seeds using near infrared spectroscopy[J].,2018,(05):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
[3]彭雅玲,邱雪,张海红,等.近红外光谱技术检测灵武长枣果肉硬度和贮藏时间[J].江苏农业学报,2019,(01):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
 PENG Ya-ling,QIU Xue,ZHANG Hai-hong,et al.Near-infrared spectroscopy for the determination of hardness and storage time of jujube fruit[J].,2019,(05):182.[doi:doi:10.3969/j.issn.1000-4440.2019.01.026]
[4]张津源,张德贤,张苗.基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J].江苏农业学报,2019,(04):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
 ZHANG Jin yuan,ZHANG De xian,ZHANG Miao.Prediction and analysis of wheat protein content by nearinfrared spectroscopy based on successive projections algorithm[J].,2019,(05):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
[5]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
 SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(05):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[6]黄琼,杨红云,万颖.基于特征数据的水稻种子分类识别方法[J].江苏农业学报,2021,(01):8.[doi:doi:10.3969/j.issn.1000-4440.2021.01.002]
 HUANG Qiong,YANG Hong-yun,WAN Ying.Classification and recognition method of rice seeds based on feature data[J].,2021,(05):8.[doi:doi:10.3969/j.issn.1000-4440.2021.01.002]
[7]方瑶,谢天铧,郭渭,等.基于近红外光谱的金鲳鱼新鲜度快速检测技术[J].江苏农业学报,2021,(01):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
 FANG Yao,XIE Tian-hua,GUO Wei,et al.Rapid detection technology of pomfret freshness based on near infrared spectroscopy[J].,2021,(05):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
[8]谢文涌,柴琴琴,林旎,等.基于Stacking集成学习的马兜铃酸及其类似物鉴别[J].江苏农业学报,2021,(02):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
 XIE Wen-yong,CHAI Qin-qin,LIN Ni,et al.Discrimination of aristolochic acid and its analogues based on stacking ensemble learning[J].,2021,(05):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
[9]沈广辉,曹瑶瑶,刘馨,等.近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
 SHEN Guang-hui,CAO Yao-yao,LIU Xin,et al.Identification of Fusarium damaged kernels using near infrared hyperspectral imaging and characteristic bands selection[J].,2021,(05):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
[10]仇逊超,张春越,张怡卓,等.流形学习在红松籽仁蛋白质含量近红外检测中的应用[J].江苏农业学报,2023,(01):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
 QIU Xun-chao,ZHANG Chun-yue,ZHANG Yi-zhuo,et al.Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J].,2023,(05):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]

备注/Memo

备注/Memo:
收稿日期:2018-07-04 基金项目:国家重点研发计划项目(2016YFD0701300) 作者简介:曲歌(1994-),女,黑龙江大庆人,硕士研究生,主要从事近红外光谱的水稻种子品质分析研究。(E-mail)xqg1002@163.com 通讯作者:陈争光,(E-mail)ruzee@sina.com
更新日期/Last Update: 2019-11-11