[1]王攀,赵永聚.胎盘血管形成机制及其对动物繁殖性能的影响[J].江苏农业学报,2019,(04):986-995.[doi:doi:10.3969/j.issn.1000-4440.2019.04.034]
 WANG Pan,ZHAO Yong ju.Mechanism of placental angiogenesis and its effect on animal reproductive performance[J].,2019,(04):986-995.[doi:doi:10.3969/j.issn.1000-4440.2019.04.034]
点击复制

胎盘血管形成机制及其对动物繁殖性能的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
986-995
栏目:
综述
出版日期:
2019-08-31

文章信息/Info

Title:
Mechanism of placental angiogenesis and its effect on animal reproductive performance
作者:
王攀赵永聚
(西南大学动物科技学院/重庆市牧草与草食家畜重点实验室/重庆市草食动物资源保护与利用工程技术研究中心,重庆400715)
Author(s):
WANG Pan ZHAO Yongju
(College of Animal Science and Technology, Southwest University/Chongqing Key Laboratory of Forage & Herbivore/Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715, China)
关键词:
胎盘血管形成信号通路繁殖性能
Keywords:
placentaangiogenesissignal pathwayreproductive performance
分类号:
S814
DOI:
doi:10.3969/j.issn.1000-4440.2019.04.034
文献标志码:
A
摘要:
胎盘是哺乳动物妊娠期间形成的母胎之间用于物质交换的临时性器官。胎盘血液循环是物质交换的载体,影响着母体正常妊娠和宫内胎儿发育。胎盘血管形成对胎儿的正常生长发育十分重要,其调控机制非常复杂,且胎盘血管形成与动物繁殖性能的发挥有关联。本文综述了胎盘血管形成过程、调控机制及其对动物繁殖性能的影响,为进一步解析动物繁殖性能差异的遗传机制、胎盘血管形成的分子机制提供研究方向。
Abstract:
Placenta is a temporary organ, which plays important role in exchanging substance between the mother and fetus during the pregnancy period in mammals. Placental blood circulation is the carrier of material exchange, which affects successful gestation and fetal development. Placental angiogenesis is very important for the normal growth and development of the fetus, and its regulatory mechanism is very complex. Placental angiogenesis is related to the reproductive performance of animals. This article reviews the process and mechanism of placental angiogenesis and its significance for animal reproductive performance, aiming to provide a research direction for further understanding the genetic mechanism of animal reproductive performance differences and the molecular mechanism of placental angiogenesis.

参考文献/References:

[1]DEMIR R, SEVAL Y, HUPPERTZ B. Vasculogenesis and angiogenesis in the early human placenta [J]. Acta Histochemical, 2007, 109(4): 257-265.
[2]RIBATTI D, VACCA A, NICO B, et al. Crosstalk between hematopoiesis and angiogenesis signaling pathways [J]. Current Molecular Medicine, 2002, 2(6):537-543.
[3]BURTON G, CHARNOCKJONES D, JAUNIAUX E. Regulation of vascular growth and function in the human placenta [J]. Reproduction, 2009, 138(6): 895-902.
[4]CHARNOCKJONES D S, KAUFMANN P, MAYHEW T M. Aspects of human fetoplacental vasculogenesis and angiogenesis I molecular regulation [J]. Placenta, 2004, 25(2): 103-113.
[5]GRAZULBILSKA A, BOROWICZ P, JOHNSON M, et al. Placental development during early pregnancy in sheep: vascular growth and expression of angiogenic factors in maternal placenta [J]. Reproduction, 2010, 140(1): 165-174.
[6]REYNOLDS L, BOROWICZ P, CATON J, et al. Uteroplacental vascular development and placental function: an update [J]. International Journal of Developmental Biology, 2010, 54(2/3): 355-365.
[7]BOROWICZ P P, ARNOLD D R, JOHNSON M L, et al. Placental growth throughout the last two thirds of pregnancy in sheep: vascular development and angiogenic factor expression [J]. Biology of Reproduction, 2007, 76(2): 259-267.
[8]GIRLING J, ROGERS P. Regulation of endometrial vascular remodeling: role of the vascular endothelial growth factor family and the angiopoietinTIE signaling system [J]. Reproduction, 2009, 138(6):883-893.
[9]FERRARA N. Vascular endothelial growth factor: basic science and clinical progress [J]. Endocrine Reviews, 2004, 25(4):581-611.
[10]VRACHNIS N, KALAMPOKAS E, SIFAKIS S, et al. Placental growth factor (PlGF): a key to optimizing fetal growth [J]. Journal of MaternalFetal & Neonatal Medicine, 2013, 26(10):995-1002.
[11]CBESUAREZ S, ZEHNDERFJLLMAN A, BALLMERHOFER K. The role of VEGF receptors in angiogenesis; complex partnerships [J]. Cellular and Molecular Life Sciences, 2006, 63(5): 601-615.
[12]ROSKOSKI R. VEGF receptor proteintyrosine kinases: structure and regulation [J]. Biochemical and Biophysical Research Communications, 2008, 375(3): 287-291.
[13]RIBATTI D. The discovery of the placental growth factor and its role in angiogenesis: a historical review [J]. Angiogenesis, 2008, 11(3): 215-221.
[14]KACZMAREK M M, KIEWISZ J, SCHAMS D, et al. Expression of VEGFreceptor system in conceptus during periimplantation period and endometrial and luteal expression of soluble VEGFR1 in the pig[J]. Theriogenology, 2009, 71(8): 1298-1306.
[15]SANCHIS E, CRISTOFOLINI A, MERKIS C. Porcine placental immunoexpression of vascular endothelial growth factor, placenta growth factor, flt1 and flk1[J]. Biotechnic & Histochemistry, 2015, 90(7): 486-494.
[16]GRAZULBILSKA A, JOHNSON M, BOROWICZ P, et al. Placental development during early pregnancy in sheep: cell proliferation, global methylation, and angiogenesis in the fetal placenta [J]. Reproduction, 2011, 141(4): 529-540.
[17]BURTON G J, FOWDEN A L. Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation[J]. Placenta, 2012, 33 (suppl): 23-27.
[18]FEARNLEY G W, SMITH G A, ODELL A F, et al. Vascular endothelial growth factor Astimulated signaling from endosomes in primary endothelial cells[J]. Methods Enzymol, 2014, 535(1):265-292.
[19]WANG Q, LASH G E. Angiopoietin 2 in placentation and tumor biology: the yin and yang of vascular biology [J]. Placenta, 2017, 56: 73-78.
[20]YOUNG KOH G, AUGUSTIN H G, THURSTON G, et al. Control of vascular morphogenesis and homeostasis through the angiopoietintie system [J]. Nature Reviews Molecular Cell Biology, 2009, 10(3): 165-177.
[21]GALE N W, THURSTON G, HACKETT S F, et al. Angiopoietin2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin1 [J]. Developmental Cell, 2002, 3(3): 411-423.
[22]DE A, MAULIK D, LANKACHANDRA K, et al. Fetoplacental regional variations in the expression of angiopoietin1, angiopoietin2, and Tie2 in normalterm and nearterm pregnancies [J]. Journal of MaternalFetal & Neonatal Medicine, 2016, 29(21): 3421-3428.
[23]FIORIMANTI M R, RABAGLINO M B, CRISTOFOLINI A L, et al. Immunohistochemical determination of ang1, ang2 and tie2 in placentas of sows at 30, 60 and 114 days of gestation and validation through a bioinformatic approach [J]. Animal Reproduction Science, 2018, 195: 242-250.
[24]KATZ A B, KESWANI S G, HABLI M, et al. Placental gene transfer: transgene screening in mice for trophic effects on the placenta [J]. American Journal of Obstetrics and Gynecology, 2009, 201(5): 499.
[25]FENG L, LIAO W, LUO Q, et al. Caveolin1 orchestrates fibroblast growth factor 2 signaling control of angiogenesis in placental artery endothelial cell caveolae [J]. Journal of Cellular Physiology, 2012, 227(6): 2480-2491.
[26]MATAGREENWOOD E, LIAO W, ZHENG J, et al. Differential activation of multiple signaling pathways dictates eNOS upregulation by FGF2 but not VEGF in placental artery endothelial cells [J]. Placenta, 2008, 29(8): 708-717.
[27]ZHENG J, WEN Y, SONG Y, et al. Activation of multiple signaling pathways is critical for fibroblast growth factor2 and vascular endothelial growth factorstimulated ovine fetoplacental endothelial cell proliferation [J]. Biology of Reproduction, 2008, 78(1): 143-150.
[28]KUNATH T, YAMANAKA Y, DETMAR J, et al. Developmental differences in the expression of FGF receptors between human and mouse embryos [J]. Placenta, 2014, 35(12):1079-1088.
[29]PFARRER C, WEISE S, BERISHA B, et al. Fibroblast growth factor (FGF)1, FGF2, FGF7 and FGF receptors are uniformly expressed in trophoblast giant cells during restricted trophoblast invasion in cows [J]. Placenta, 2006, 27(6):758-770.
[30]OZAWA M, YANG Q, EALY A. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro [J]. Reproduction, 2013, 145(2):191-201.
[31]AMPEY B, MORSCHAUSER T, LAMPE P, et al. Gap junction regulation of vascular tone: implications of modulatory intercellular communication during gestation[M]. NewYork: Springer, 2014.
[32]ALBRECHT E, PEPE G. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy [J]. International Journal of Developmental Biology, 2010, 54(2/3): 397-407.
[33]REYNOLDS L, KIRSCH J, KRAFT K, et al. Timecourse of the uterine response to estradiol17 beta in ovariectomized ewes: expression of angiogenic factors [J]. Biology of Reproduction, 1998, 59(3):613-620.
[34]JOHNSON M L, GRAZULBILSKA A T, REDMER D A, et al. Effects of estradiol17β on expression of mRNA for seven angiogenic factors and their receptors in the endometrium of ovariectomized (OVX) ewes [J]. Endocrine, 2006, 30(3):333-342.
[35]BONAGURA T W, PEPE G J, ENDERS A C, et al. Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy [J]. Endocrinology, 2008, 149(10):5078-5087.
[36]BABISCHKIN J S, SURESCH D L, PEPE G J, et al. Differential expression of placental villous angiopoietin1 and 2 during early, mid, and late baboon pregnancy [J]. Placenta, 2007, 28: 212-218.
[37]SZEKERESBARTHO J, VARGA P, KINSKY R, et al. Progesteronemediated immunosuppression and the maintenance of pregnancy [J]. Research in Immunology, 1990, 141(2):175-181.
[38]LIAO Q, BUHIMSCHI I, SAADE G, et al. Regulation of vascular adaptation during pregnancy and postpartum: effects of nitric oxide inhibition and steroid hormones [J]. Human Reproduction, 1996, 11(12):2777-2784.
[39]WAKAHASHI S, NAKABAYASHI K, MARUO N, et al. Effects of corticotropicreleasing hormone and stresscopin on vascular endothelial growth factor mRNA expression in cultured early human extravillous trophoblasts [J]. Endocrine, 2008, 33(2):144-151.
[40]CLAPP C, THEBAULT S, JEZIORSKI M, et al. Peptide hormone regulation of angiogenesis [J]. Physiological Reviews, 2009, 89(4): 1177-1215.
[41]OZMEN A, UNEK G, KORGUN E T. Effect of glucocorticoids on mechanisms of placental angiogenesis [J]. Placenta, 2017, 52: 41-48.
[42]PONTING C P, OLIVER P L, REIK W. Evolution and functions of long noncoding RNAs [J]. Cell, 2009, 136(4):629-641.
[43]ZOU Y, JIANG Z, YU X, et al. Upregulation of long noncoding RNA SPRY4IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR8SV/neo [J]. PLoS ONE, 2013, 8(11):79598.
[44]CAO C, LI J, LI J, et al. Long noncoding RNA Uc.187 is upregulated in preeclampsia and modulates proliferation, apoptosis, and invasion of HTR8/SVneo trophoblast cells [J]. Journal of Cellular Biochemistry, 2017, 118(6):1462-1470.
[45]ZHANG Y, ZOU Y, WANG W, et al. Downregulated long noncoding RNA MEG3 and its effect on promoting apoptosis and suppressing migration of trophoblast cells [J]. Journal of Cellular Biochemistry, 2015, 116(4):542-550.
[46]ZOU Y, LI Q, XU Y, et al. Promotion of trophoblast invasion by lncRNA MVIH through inducing JunB [J]. Journal of Cellular and Molecular Medicine, 2018, 22(2):1214-1223.
[47]FORBES K, FARROKHNIA F, APLIN J D, et al. Dicerdependent miRNAs provide an endogenous restraint on cytotrophoblast proliferation [J]. Placenta, 2012, 33(7):581-585.
[48]MORALESPRIETO D M, CHAIWANGYEN W, OSPINAPRIETO S, et al. MicroRNA expression profiles of trophoblastic cells [J]. Placenta, 2012, 33(9):725-734.
[49]WANG Y, FAN H, ZHAO G, et al. miR16 inhibits the proliferation and angiogenesisregulating potential of mesenchymal stem cells in severe preeclampsia [J]. FEBS Journal, 2012, 279(24):4510-4524.
[50]LI P, GUO W, DU L, et al. MicroRNA29b contributes to preeclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells [J]. Clinical Science, 2013, 124(1/2):27-40.
[51]HASSEL D, CHENG P, WHITE M, et al. MicroRNA10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling [J]. Circulation Research, 2012, 111(11):1421.
[52]MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.
[53]ZHANG Y, ZHANG X, CHEN T, et al. Circular intronic long noncoding RNAs [J]. Molecular Cell, 2013, 51(6):792-806.
[54]CHEN L. The biogenesis and emerging roles of circular RNAs [J]. Nature Reviews Molecular Cell Biology, 2016, 17(4):205-211.
[55]WANG W, FENG L, ZHANG H, et al. Preeclampsia upregulates angiogenesisassociated MicroRNA (i.e., miR17, 20a, and 20b) that target EphrinB2 and EPHB4 in human placenta [J]. The Journal of Clinical Endocrinology & Metabolism, 2012, 97(6):1051-1059.
[56]QIAN Y, LU Y, RUI C, et al. Potential significance of circular RNA in human placental tissue for patients with preeclampsia [J]. Cellular Physiology and Biochemistry, 2016, 39(4):1380-1390.
[57]CHENG C, QIN Y, SHAO X, et al. Induction of TNFα by LPS in schwann cell is regulated by MAPK activation signals [J]. Cellular and Molecular Neurobiology, 2007, 27(7): 909-921.
[58]CARGNELLO M, ROUX P P. Activation and function of the MAPKs and their substrates, the MAPKactivated protein kinases [J]. Microbiology and Molecular Biology Reviews, 2011, 75(1): 50-83.
[59]ADAMS R H, PORRAS A, ALONSO G, et al. Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development [J]. Molecular Cell, 2000, 6(1): 109-116.
[60]IKAWA M, NAKASHIMA H, OKABE M, et al. Complementation of placental defects and embryonic lethality by trophoblastspecific lentiviral gene transfer [J]. Nature Biotechnology, 2007, 25(2): 233-237.
[61]FENG L, ZHANG H, WANG W, et al. Compartmentalizing proximal FGFR1 signaling in ovine placental artery endothelial cell caveolae [J]. Biology of Reproduction, 2012, 87(2): 40.
[62]LIM W, BAE H, BAZER F W, et al. Fibroblast growth factor 2 induces proliferation and distribution of G2/M phase of bovine endometrial cells involving activation of PI3K/AKT and MAPK cell signaling and prevention of effects of ER stress [J]. Journal of Cellular Physiology, 2018, 233(4): 3295-3305.
[63]URANO T, ITO Y, AKAO M, et al. Angiopoietinrelated growth factor enhances blood flow via activation of the ERK1/2eNOSNO pathway in a mouse hindlimb ischemia model [J]. Arteriosclerosis Thrombosis and Vascular Biology, 2008, 28(5): 827-834.
[64]LIAO W, FENG L, ZHENG J, et al. Deciphering mechanisms controlling placental artery endothelial cell migration stimulated by vascular endothelial growth factor [J]. Endocrinology, 2010, 151(7): 3432-3444.
[65]LIAO W, FENG L, ZHANG H, et al. Compartmentalizing VEGFinduced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin1 in placental angiogenesis in vitro [J]. Molecular Endocrinology, 2009, 23(9): 1428-1444.
[66]MATAGREENWOOD E, LIAO W, WANG W, et al. Activation of AP1 transcription factors differentiates FGF2 and vascular endothelial growth factor regulation of endothelial nitricoxide synthase expression in placental artery endothelial cells [J]. Journal of Biological Chemistry, 2010, 285(23): 17348-17358.
[67]FRUMAN D A, CHIU H, HOPKINS B D, et al. The PI3K pathway in human disease [J]. Cell, 2017, 170(4): 605-635.
[68]SPANGLE J M, ROBERTS T M, ZHAO J J. The emerging role of PI3K/AKTmediated epigenetic regulation in cancer [J]. BBA  Reviews on Cancer, 2017, 1868(1): 123-131.
[69]CHEN J, LAWRENCE M, CUNNINGHAM G, et al. HSP90 and akt modulate ang1induced angiogenesis via NO in coronary artery endothelium [J]. Journal of Applied Physiology, 2004, 96(2): 612-620.
[70]LEE M Y, LUCIANO A K, ACKAH E, et al. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12865-12870.
[71]YANG Z, TSCHOPP O, HEMMINGSMIESZCZAK M, et al. Protein kinase B alpha/Akt1 regulates placental development and fetal growth [J]. Journal of Biological Chemistry, 2003, 278(34): 32124-32131.
[72]SEARLES C. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression [J]. American Journal of PhysiologyCell Physiology, 2006, 291(5): 803-816.
[73]HAN R N N, STEWART D J. Defective lung vascular development in endothelial nitric oxide synthasedeficient mice [J]. Trends in Cardiovascular Medicine, 2006, 16(1): 29-34.
[74]TSUTSUI M, SHIMOKAWA H, OTSUJI Y, et al. Nitric oxide synthases and cardiovascular diseases insights from genetically modified mice [J]. Circulation Journal, 2009, 73(6): 986-993.
[75]KULANDAVELU S, WHITELEY K, BAINBRIDGE S, et al. Endothelial NO synthase augments fetoplacental blood flow, placental vascularization, and fetal growth in mice[J]. Hypertension, 2013, 61(1): 259.
[76]OLIVIER W H, ESSERS Y P G, FAZZI G, et al. Uterine artery remodeling and reproductive performance are impaired in endothelial nitric oxide synthasedeficient mice [J]. Biology of Reproduction, 2005, 72(5): 1161-1168.
[77]KULANDAVELU S, WHITELEY K, QU D, et al. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice[J]. Hypertension, 2012, 60(1): 231-238.
[78]张兆旺. 牦牛胎儿胎盘解剖和组织学研究[J]. 中国草食动物科学,1999(6): 10-12.
[79]VONNAHME K A, EVONIUK J, JOHNSON M L, et al. Placental vascularity and growth factor expression in singleton, twin, and triplet pregnancies in the sheep [J]. Endocrine, 2008, 33(1): 53-61.
[80]HONG L, HOU C, LI X, et al. Expression of heparanase is associated with breedspecific morphological characters of placental folded bilayer between Yorkshire and meishan pigs [J]. Biology of Reproduction, 2014, 90(3): 56.
[81]CRISTOFOLINI A, FIORIMANTI M, CAMPOS M, et al. Morphometric study of the porcine placental vascularization [J]. Reproduction in Domestic Animals, 2018, 53(1): 217-225.
[82]ROBERTS R, GREEN J, SCHULZ L. The evolution of the placenta [J]. Reproduction, 2016, 152(5): 179-189.
[83]VALLET J, MCNEEL A, JOHNSON G, et al. Triennial Reproduction Symposium: limitations in uterine and conceptus physiology that lead to fetal losses [J]. Journal of Animal Science, 2013, 91(7): 3030-3040.
[84]CHEN F, WANG T, FENG C, et al. Proteome differences in placenta and endometrium between normal and intrauterine growth restricted pig fetuses [J]. PLoS ONE, 2015, 10(11): e0142396.
[85]CARR D J, DAVID A L, AITKEN R P, et al. Placental vascularity and markers of angiogenesis in relation to prenatal growth status in overnourished adolescent ewes [J]. Placenta, 2016, 46: 79-86.
[86]TILLEY R E, MCNEIL C J, ASHWORTH C J, et al. Altered muscle development and expression of the insulinlike growth factor system in growth retarded fetal pigs [J]. Domestic Animal Endocrinology, 2007, 32(3): 167-177.
[87]GOOTWINE E, SPENCER T E, BAZER F W. Littersizedependent intrauterine growth restriction in sheep [J]. Animal, 2007, 1(4): 547-564.
[88]胡淑君,孙红,邓宇,等. 双绒毛膜双胎胎盘血管结构与胎儿体重的关系[J]. 中国生育健康杂志, 2011, 22(2): 80-82.
[89]WIRRENGA J, BOROWICZ P, LUTHER J, et al. Vascular development, of fetal placental cotyledons (COT) in single, twin and triplet pregnancies in sheep [J]. Journal of Animal Science, 2004, 82: 106-107.
[90]VONNAHME K A, WILSON M E, LI Y, et al. Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy [J]. The Journal of Physiology, 2005, 565(1): 101-109.
[91]GRAZULBILSKA A T, JOHNSON M L, BOROWICZ P P, et al. Placental development during early pregnancy in sheep: effects of embryo origin on fetal and placental growth and global methylation [J]. Theriogenology, 2013, 79(1): 94-102.
[92]GRAZULBILSKA A, JOHNSON M, BOROWICZ P, et al. Placental development during early pregnancy in sheep: effects of embryo origin on vascularization [J]. Reproduction, 2014, 147(5): 639-648.
[93]HAGEN A, ORBUS R, WILKENING R, et al. Placental expression of angiopoietin1, angiopoietin2 and tie2 during placental development in an ovine model of placental insufficiencyfetal growth restriction [J]. Pediatric Research, 2005, 58(6): 1228-1232.
[94]TAYADE C, FANG Y, HILCHIE D, et al. Lymphocyte contributions to altered endometrial angiogenesis during early and midgestation fetal loss [J]. Journal of Leukocyte Biology, 2007, 82(4): 877-886.
[95]LINTON N F, WESSELS J M, CNOSSEN S A, et al. Angiogenic DCSIGN cells are present at the attachment sites of epitheliochorial placentae [J]. Immunology and Cell Biology, 2010, 88(1): 63-71.
[96]EDWARDS A, VAN DEN HEUVEL M, WESSELS J, et al. Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin1 and their receptors at the porcine maternalfetal interface [J]. Reproductive Biology and Endocrinology, 2011, 9(1): 5.
[97]WILSON M E, BIENSEN N J, FORD S P. Novel insight into the control of litter size in pigs, using placental efficiency as a selection tool [J]. Journal of Animal Science, 1999, 77(7): 1654-1658.
[98]VALLET J, MCNEEL A, MILES J, et al. Placental accommodations for transport and metabolism during intrauterine crowding in pigs [J]. Journal of Animal Science and Biotechnology, 2014, 5(1): 55.
[99]MESA H, CAMMACK K, SAFRANSKI T, et al. Selection for placental efficiency in swine: conceptus development [J]. Journal of Animal Science, 2012, 90(12): 4217-4222.
[100]OCAK S, OGUN S, GUNDUZ Z, et al. Relationship between placental traits and birth related factors in Damascus goats [J]. Livestock Science, 2014, 161: 218-223.
[101]HAFEZ S, BOROWICZ P, REYNOLDS L, et al. Maternal and fetal microvasculature in sheep placenta at several stages of gestation[J]. Journal of Anatomy, 2010, 216(3): 292-300.
[102]VONNAHME K A, WILSON M E, FORD S P. Relationship between placental vascular endothelial growth factor expression and Placental/Endometrial vascularity in the pig [J]. Biology of Reproduction, 2001, 64(6): 1821-1825.
[103]SONG Y, LIU Z, HAN Y, et al. DNA methylationmediated silencing of FLT1 in parthenogenetic porcine placentas [J]. Placenta, 2017, 58: 86-89.

备注/Memo

备注/Memo:
收稿日期:2018-11-05 基金项目:国家自然科学基金项目(31772564);中央高校基本业务费专项(XDJK2017A003);重庆市社会民生科技创新专项(cstc2016shmszx80064、cstc2017shmszdyfX0045);国家重点研发计划课题(2018YFD0502003);重庆高校创新团队建设计划项目(CXTDG201602004) 作者简介:王攀(1994-),男,重庆开州人,硕士研究生,研究方向为动物分子遗传育种。(E-mail)1179795012@qq.com 通讯作者:赵永聚,(E-mail)zyongju@163.com
更新日期/Last Update: 2019-08-31