参考文献/References:
[1]DEMIR R, SEVAL Y, HUPPERTZ B. Vasculogenesis and angiogenesis in the early human placenta [J]. Acta Histochemical, 2007, 109(4): 257-265.
[2]RIBATTI D, VACCA A, NICO B, et al. Crosstalk between hematopoiesis and angiogenesis signaling pathways [J]. Current Molecular Medicine, 2002, 2(6):537-543.
[3]BURTON G, CHARNOCKJONES D, JAUNIAUX E. Regulation of vascular growth and function in the human placenta [J]. Reproduction, 2009, 138(6): 895-902.
[4]CHARNOCKJONES D S, KAUFMANN P, MAYHEW T M. Aspects of human fetoplacental vasculogenesis and angiogenesis I molecular regulation [J]. Placenta, 2004, 25(2): 103-113.
[5]GRAZULBILSKA A, BOROWICZ P, JOHNSON M, et al. Placental development during early pregnancy in sheep: vascular growth and expression of angiogenic factors in maternal placenta [J]. Reproduction, 2010, 140(1): 165-174.
[6]REYNOLDS L, BOROWICZ P, CATON J, et al. Uteroplacental vascular development and placental function: an update [J]. International Journal of Developmental Biology, 2010, 54(2/3): 355-365.
[7]BOROWICZ P P, ARNOLD D R, JOHNSON M L, et al. Placental growth throughout the last two thirds of pregnancy in sheep: vascular development and angiogenic factor expression [J]. Biology of Reproduction, 2007, 76(2): 259-267.
[8]GIRLING J, ROGERS P. Regulation of endometrial vascular remodeling: role of the vascular endothelial growth factor family and the angiopoietinTIE signaling system [J]. Reproduction, 2009, 138(6):883-893.
[9]FERRARA N. Vascular endothelial growth factor: basic science and clinical progress [J]. Endocrine Reviews, 2004, 25(4):581-611.
[10]VRACHNIS N, KALAMPOKAS E, SIFAKIS S, et al. Placental growth factor (PlGF): a key to optimizing fetal growth [J]. Journal of MaternalFetal & Neonatal Medicine, 2013, 26(10):995-1002.
[11]CBESUAREZ S, ZEHNDERFJLLMAN A, BALLMERHOFER K. The role of VEGF receptors in angiogenesis; complex partnerships [J]. Cellular and Molecular Life Sciences, 2006, 63(5): 601-615.
[12]ROSKOSKI R. VEGF receptor proteintyrosine kinases: structure and regulation [J]. Biochemical and Biophysical Research Communications, 2008, 375(3): 287-291.
[13]RIBATTI D. The discovery of the placental growth factor and its role in angiogenesis: a historical review [J]. Angiogenesis, 2008, 11(3): 215-221.
[14]KACZMAREK M M, KIEWISZ J, SCHAMS D, et al. Expression of VEGFreceptor system in conceptus during periimplantation period and endometrial and luteal expression of soluble VEGFR1 in the pig[J]. Theriogenology, 2009, 71(8): 1298-1306.
[15]SANCHIS E, CRISTOFOLINI A, MERKIS C. Porcine placental immunoexpression of vascular endothelial growth factor, placenta growth factor, flt1 and flk1[J]. Biotechnic & Histochemistry, 2015, 90(7): 486-494.
[16]GRAZULBILSKA A, JOHNSON M, BOROWICZ P, et al. Placental development during early pregnancy in sheep: cell proliferation, global methylation, and angiogenesis in the fetal placenta [J]. Reproduction, 2011, 141(4): 529-540.
[17]BURTON G J, FOWDEN A L. Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation[J]. Placenta, 2012, 33 (suppl): 23-27.
[18]FEARNLEY G W, SMITH G A, ODELL A F, et al. Vascular endothelial growth factor Astimulated signaling from endosomes in primary endothelial cells[J]. Methods Enzymol, 2014, 535(1):265-292.
[19]WANG Q, LASH G E. Angiopoietin 2 in placentation and tumor biology: the yin and yang of vascular biology [J]. Placenta, 2017, 56: 73-78.
[20]YOUNG KOH G, AUGUSTIN H G, THURSTON G, et al. Control of vascular morphogenesis and homeostasis through the angiopoietintie system [J]. Nature Reviews Molecular Cell Biology, 2009, 10(3): 165-177.
[21]GALE N W, THURSTON G, HACKETT S F, et al. Angiopoietin2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin1 [J]. Developmental Cell, 2002, 3(3): 411-423.
[22]DE A, MAULIK D, LANKACHANDRA K, et al. Fetoplacental regional variations in the expression of angiopoietin1, angiopoietin2, and Tie2 in normalterm and nearterm pregnancies [J]. Journal of MaternalFetal & Neonatal Medicine, 2016, 29(21): 3421-3428.
[23]FIORIMANTI M R, RABAGLINO M B, CRISTOFOLINI A L, et al. Immunohistochemical determination of ang1, ang2 and tie2 in placentas of sows at 30, 60 and 114 days of gestation and validation through a bioinformatic approach [J]. Animal Reproduction Science, 2018, 195: 242-250.
[24]KATZ A B, KESWANI S G, HABLI M, et al. Placental gene transfer: transgene screening in mice for trophic effects on the placenta [J]. American Journal of Obstetrics and Gynecology, 2009, 201(5): 499.
[25]FENG L, LIAO W, LUO Q, et al. Caveolin1 orchestrates fibroblast growth factor 2 signaling control of angiogenesis in placental artery endothelial cell caveolae [J]. Journal of Cellular Physiology, 2012, 227(6): 2480-2491.
[26]MATAGREENWOOD E, LIAO W, ZHENG J, et al. Differential activation of multiple signaling pathways dictates eNOS upregulation by FGF2 but not VEGF in placental artery endothelial cells [J]. Placenta, 2008, 29(8): 708-717.
[27]ZHENG J, WEN Y, SONG Y, et al. Activation of multiple signaling pathways is critical for fibroblast growth factor2 and vascular endothelial growth factorstimulated ovine fetoplacental endothelial cell proliferation [J]. Biology of Reproduction, 2008, 78(1): 143-150.
[28]KUNATH T, YAMANAKA Y, DETMAR J, et al. Developmental differences in the expression of FGF receptors between human and mouse embryos [J]. Placenta, 2014, 35(12):1079-1088.
[29]PFARRER C, WEISE S, BERISHA B, et al. Fibroblast growth factor (FGF)1, FGF2, FGF7 and FGF receptors are uniformly expressed in trophoblast giant cells during restricted trophoblast invasion in cows [J]. Placenta, 2006, 27(6):758-770.
[30]OZAWA M, YANG Q, EALY A. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro [J]. Reproduction, 2013, 145(2):191-201.
[31]AMPEY B, MORSCHAUSER T, LAMPE P, et al. Gap junction regulation of vascular tone: implications of modulatory intercellular communication during gestation[M]. NewYork: Springer, 2014.
[32]ALBRECHT E, PEPE G. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy [J]. International Journal of Developmental Biology, 2010, 54(2/3): 397-407.
[33]REYNOLDS L, KIRSCH J, KRAFT K, et al. Timecourse of the uterine response to estradiol17 beta in ovariectomized ewes: expression of angiogenic factors [J]. Biology of Reproduction, 1998, 59(3):613-620.
[34]JOHNSON M L, GRAZULBILSKA A T, REDMER D A, et al. Effects of estradiol17β on expression of mRNA for seven angiogenic factors and their receptors in the endometrium of ovariectomized (OVX) ewes [J]. Endocrine, 2006, 30(3):333-342.
[35]BONAGURA T W, PEPE G J, ENDERS A C, et al. Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy [J]. Endocrinology, 2008, 149(10):5078-5087.
[36]BABISCHKIN J S, SURESCH D L, PEPE G J, et al. Differential expression of placental villous angiopoietin1 and 2 during early, mid, and late baboon pregnancy [J]. Placenta, 2007, 28: 212-218.
[37]SZEKERESBARTHO J, VARGA P, KINSKY R, et al. Progesteronemediated immunosuppression and the maintenance of pregnancy [J]. Research in Immunology, 1990, 141(2):175-181.
[38]LIAO Q, BUHIMSCHI I, SAADE G, et al. Regulation of vascular adaptation during pregnancy and postpartum: effects of nitric oxide inhibition and steroid hormones [J]. Human Reproduction, 1996, 11(12):2777-2784.
[39]WAKAHASHI S, NAKABAYASHI K, MARUO N, et al. Effects of corticotropicreleasing hormone and stresscopin on vascular endothelial growth factor mRNA expression in cultured early human extravillous trophoblasts [J]. Endocrine, 2008, 33(2):144-151.
[40]CLAPP C, THEBAULT S, JEZIORSKI M, et al. Peptide hormone regulation of angiogenesis [J]. Physiological Reviews, 2009, 89(4): 1177-1215.
[41]OZMEN A, UNEK G, KORGUN E T. Effect of glucocorticoids on mechanisms of placental angiogenesis [J]. Placenta, 2017, 52: 41-48.
[42]PONTING C P, OLIVER P L, REIK W. Evolution and functions of long noncoding RNAs [J]. Cell, 2009, 136(4):629-641.
[43]ZOU Y, JIANG Z, YU X, et al. Upregulation of long noncoding RNA SPRY4IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR8SV/neo [J]. PLoS ONE, 2013, 8(11):79598.
[44]CAO C, LI J, LI J, et al. Long noncoding RNA Uc.187 is upregulated in preeclampsia and modulates proliferation, apoptosis, and invasion of HTR8/SVneo trophoblast cells [J]. Journal of Cellular Biochemistry, 2017, 118(6):1462-1470.
[45]ZHANG Y, ZOU Y, WANG W, et al. Downregulated long noncoding RNA MEG3 and its effect on promoting apoptosis and suppressing migration of trophoblast cells [J]. Journal of Cellular Biochemistry, 2015, 116(4):542-550.
[46]ZOU Y, LI Q, XU Y, et al. Promotion of trophoblast invasion by lncRNA MVIH through inducing JunB [J]. Journal of Cellular and Molecular Medicine, 2018, 22(2):1214-1223.
[47]FORBES K, FARROKHNIA F, APLIN J D, et al. Dicerdependent miRNAs provide an endogenous restraint on cytotrophoblast proliferation [J]. Placenta, 2012, 33(7):581-585.
[48]MORALESPRIETO D M, CHAIWANGYEN W, OSPINAPRIETO S, et al. MicroRNA expression profiles of trophoblastic cells [J]. Placenta, 2012, 33(9):725-734.
[49]WANG Y, FAN H, ZHAO G, et al. miR16 inhibits the proliferation and angiogenesisregulating potential of mesenchymal stem cells in severe preeclampsia [J]. FEBS Journal, 2012, 279(24):4510-4524.
[50]LI P, GUO W, DU L, et al. MicroRNA29b contributes to preeclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells [J]. Clinical Science, 2013, 124(1/2):27-40.
[51]HASSEL D, CHENG P, WHITE M, et al. MicroRNA10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling [J]. Circulation Research, 2012, 111(11):1421.
[52]MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.
[53]ZHANG Y, ZHANG X, CHEN T, et al. Circular intronic long noncoding RNAs [J]. Molecular Cell, 2013, 51(6):792-806.
[54]CHEN L. The biogenesis and emerging roles of circular RNAs [J]. Nature Reviews Molecular Cell Biology, 2016, 17(4):205-211.
[55]WANG W, FENG L, ZHANG H, et al. Preeclampsia upregulates angiogenesisassociated MicroRNA (i.e., miR17, 20a, and 20b) that target EphrinB2 and EPHB4 in human placenta [J]. The Journal of Clinical Endocrinology & Metabolism, 2012, 97(6):1051-1059.
[56]QIAN Y, LU Y, RUI C, et al. Potential significance of circular RNA in human placental tissue for patients with preeclampsia [J]. Cellular Physiology and Biochemistry, 2016, 39(4):1380-1390.
[57]CHENG C, QIN Y, SHAO X, et al. Induction of TNFα by LPS in schwann cell is regulated by MAPK activation signals [J]. Cellular and Molecular Neurobiology, 2007, 27(7): 909-921.
[58]CARGNELLO M, ROUX P P. Activation and function of the MAPKs and their substrates, the MAPKactivated protein kinases [J]. Microbiology and Molecular Biology Reviews, 2011, 75(1): 50-83.
[59]ADAMS R H, PORRAS A, ALONSO G, et al. Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development [J]. Molecular Cell, 2000, 6(1): 109-116.
[60]IKAWA M, NAKASHIMA H, OKABE M, et al. Complementation of placental defects and embryonic lethality by trophoblastspecific lentiviral gene transfer [J]. Nature Biotechnology, 2007, 25(2): 233-237.
[61]FENG L, ZHANG H, WANG W, et al. Compartmentalizing proximal FGFR1 signaling in ovine placental artery endothelial cell caveolae [J]. Biology of Reproduction, 2012, 87(2): 40.
[62]LIM W, BAE H, BAZER F W, et al. Fibroblast growth factor 2 induces proliferation and distribution of G2/M phase of bovine endometrial cells involving activation of PI3K/AKT and MAPK cell signaling and prevention of effects of ER stress [J]. Journal of Cellular Physiology, 2018, 233(4): 3295-3305.
[63]URANO T, ITO Y, AKAO M, et al. Angiopoietinrelated growth factor enhances blood flow via activation of the ERK1/2eNOSNO pathway in a mouse hindlimb ischemia model [J]. Arteriosclerosis Thrombosis and Vascular Biology, 2008, 28(5): 827-834.
[64]LIAO W, FENG L, ZHENG J, et al. Deciphering mechanisms controlling placental artery endothelial cell migration stimulated by vascular endothelial growth factor [J]. Endocrinology, 2010, 151(7): 3432-3444.
[65]LIAO W, FENG L, ZHANG H, et al. Compartmentalizing VEGFinduced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin1 in placental angiogenesis in vitro [J]. Molecular Endocrinology, 2009, 23(9): 1428-1444.
[66]MATAGREENWOOD E, LIAO W, WANG W, et al. Activation of AP1 transcription factors differentiates FGF2 and vascular endothelial growth factor regulation of endothelial nitricoxide synthase expression in placental artery endothelial cells [J]. Journal of Biological Chemistry, 2010, 285(23): 17348-17358.
[67]FRUMAN D A, CHIU H, HOPKINS B D, et al. The PI3K pathway in human disease [J]. Cell, 2017, 170(4): 605-635.
[68]SPANGLE J M, ROBERTS T M, ZHAO J J. The emerging role of PI3K/AKTmediated epigenetic regulation in cancer [J]. BBA Reviews on Cancer, 2017, 1868(1): 123-131.
[69]CHEN J, LAWRENCE M, CUNNINGHAM G, et al. HSP90 and akt modulate ang1induced angiogenesis via NO in coronary artery endothelium [J]. Journal of Applied Physiology, 2004, 96(2): 612-620.
[70]LEE M Y, LUCIANO A K, ACKAH E, et al. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12865-12870.
[71]YANG Z, TSCHOPP O, HEMMINGSMIESZCZAK M, et al. Protein kinase B alpha/Akt1 regulates placental development and fetal growth [J]. Journal of Biological Chemistry, 2003, 278(34): 32124-32131.
[72]SEARLES C. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression [J]. American Journal of PhysiologyCell Physiology, 2006, 291(5): 803-816.
[73]HAN R N N, STEWART D J. Defective lung vascular development in endothelial nitric oxide synthasedeficient mice [J]. Trends in Cardiovascular Medicine, 2006, 16(1): 29-34.
[74]TSUTSUI M, SHIMOKAWA H, OTSUJI Y, et al. Nitric oxide synthases and cardiovascular diseases insights from genetically modified mice [J]. Circulation Journal, 2009, 73(6): 986-993.
[75]KULANDAVELU S, WHITELEY K, BAINBRIDGE S, et al. Endothelial NO synthase augments fetoplacental blood flow, placental vascularization, and fetal growth in mice[J]. Hypertension, 2013, 61(1): 259.
[76]OLIVIER W H, ESSERS Y P G, FAZZI G, et al. Uterine artery remodeling and reproductive performance are impaired in endothelial nitric oxide synthasedeficient mice [J]. Biology of Reproduction, 2005, 72(5): 1161-1168.
[77]KULANDAVELU S, WHITELEY K, QU D, et al. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice[J]. Hypertension, 2012, 60(1): 231-238.
[78]张兆旺. 牦牛胎儿胎盘解剖和组织学研究[J]. 中国草食动物科学,1999(6): 10-12.
[79]VONNAHME K A, EVONIUK J, JOHNSON M L, et al. Placental vascularity and growth factor expression in singleton, twin, and triplet pregnancies in the sheep [J]. Endocrine, 2008, 33(1): 53-61.
[80]HONG L, HOU C, LI X, et al. Expression of heparanase is associated with breedspecific morphological characters of placental folded bilayer between Yorkshire and meishan pigs [J]. Biology of Reproduction, 2014, 90(3): 56.
[81]CRISTOFOLINI A, FIORIMANTI M, CAMPOS M, et al. Morphometric study of the porcine placental vascularization [J]. Reproduction in Domestic Animals, 2018, 53(1): 217-225.
[82]ROBERTS R, GREEN J, SCHULZ L. The evolution of the placenta [J]. Reproduction, 2016, 152(5): 179-189.
[83]VALLET J, MCNEEL A, JOHNSON G, et al. Triennial Reproduction Symposium: limitations in uterine and conceptus physiology that lead to fetal losses [J]. Journal of Animal Science, 2013, 91(7): 3030-3040.
[84]CHEN F, WANG T, FENG C, et al. Proteome differences in placenta and endometrium between normal and intrauterine growth restricted pig fetuses [J]. PLoS ONE, 2015, 10(11): e0142396.
[85]CARR D J, DAVID A L, AITKEN R P, et al. Placental vascularity and markers of angiogenesis in relation to prenatal growth status in overnourished adolescent ewes [J]. Placenta, 2016, 46: 79-86.
[86]TILLEY R E, MCNEIL C J, ASHWORTH C J, et al. Altered muscle development and expression of the insulinlike growth factor system in growth retarded fetal pigs [J]. Domestic Animal Endocrinology, 2007, 32(3): 167-177.
[87]GOOTWINE E, SPENCER T E, BAZER F W. Littersizedependent intrauterine growth restriction in sheep [J]. Animal, 2007, 1(4): 547-564.
[88]胡淑君,孙红,邓宇,等. 双绒毛膜双胎胎盘血管结构与胎儿体重的关系[J]. 中国生育健康杂志, 2011, 22(2): 80-82.
[89]WIRRENGA J, BOROWICZ P, LUTHER J, et al. Vascular development, of fetal placental cotyledons (COT) in single, twin and triplet pregnancies in sheep [J]. Journal of Animal Science, 2004, 82: 106-107.
[90]VONNAHME K A, WILSON M E, LI Y, et al. Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy [J]. The Journal of Physiology, 2005, 565(1): 101-109.
[91]GRAZULBILSKA A T, JOHNSON M L, BOROWICZ P P, et al. Placental development during early pregnancy in sheep: effects of embryo origin on fetal and placental growth and global methylation [J]. Theriogenology, 2013, 79(1): 94-102.
[92]GRAZULBILSKA A, JOHNSON M, BOROWICZ P, et al. Placental development during early pregnancy in sheep: effects of embryo origin on vascularization [J]. Reproduction, 2014, 147(5): 639-648.
[93]HAGEN A, ORBUS R, WILKENING R, et al. Placental expression of angiopoietin1, angiopoietin2 and tie2 during placental development in an ovine model of placental insufficiencyfetal growth restriction [J]. Pediatric Research, 2005, 58(6): 1228-1232.
[94]TAYADE C, FANG Y, HILCHIE D, et al. Lymphocyte contributions to altered endometrial angiogenesis during early and midgestation fetal loss [J]. Journal of Leukocyte Biology, 2007, 82(4): 877-886.
[95]LINTON N F, WESSELS J M, CNOSSEN S A, et al. Angiogenic DCSIGN cells are present at the attachment sites of epitheliochorial placentae [J]. Immunology and Cell Biology, 2010, 88(1): 63-71.
[96]EDWARDS A, VAN DEN HEUVEL M, WESSELS J, et al. Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin1 and their receptors at the porcine maternalfetal interface [J]. Reproductive Biology and Endocrinology, 2011, 9(1): 5.
[97]WILSON M E, BIENSEN N J, FORD S P. Novel insight into the control of litter size in pigs, using placental efficiency as a selection tool [J]. Journal of Animal Science, 1999, 77(7): 1654-1658.
[98]VALLET J, MCNEEL A, MILES J, et al. Placental accommodations for transport and metabolism during intrauterine crowding in pigs [J]. Journal of Animal Science and Biotechnology, 2014, 5(1): 55.
[99]MESA H, CAMMACK K, SAFRANSKI T, et al. Selection for placental efficiency in swine: conceptus development [J]. Journal of Animal Science, 2012, 90(12): 4217-4222.
[100]OCAK S, OGUN S, GUNDUZ Z, et al. Relationship between placental traits and birth related factors in Damascus goats [J]. Livestock Science, 2014, 161: 218-223.
[101]HAFEZ S, BOROWICZ P, REYNOLDS L, et al. Maternal and fetal microvasculature in sheep placenta at several stages of gestation[J]. Journal of Anatomy, 2010, 216(3): 292-300.
[102]VONNAHME K A, WILSON M E, FORD S P. Relationship between placental vascular endothelial growth factor expression and Placental/Endometrial vascularity in the pig [J]. Biology of Reproduction, 2001, 64(6): 1821-1825.
[103]SONG Y, LIU Z, HAN Y, et al. DNA methylationmediated silencing of FLT1 in parthenogenetic porcine placentas [J]. Placenta, 2017, 58: 86-89.