参考文献/References:
[1]FOYER C H, NOCTOR G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses[J]. Plant Cell, 2005, 17(7): 1866-1875.
[2]赖金莉,李欣欣,薛磊,等.植物抗旱性研究进展[J].江苏农业科学,2018,46(17):23-27.
[3]ITURBEORMETXE I, ESCUREDO P R, ARRESELGOR C, et al. Oxidative damage in pea plants exposed to water deficit or paraquat[J]. Plant Physiology, 1998, 116(1): 173-181.
[4]YOU J, CHAN Z L. ROS regulation during abiotic stress responses in crop plants[J]. Frontiers in Plant Sience, 2015, 6(4): 690-695.
[5]MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490-498.
[6]ASADA K. The waterwater cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molcular Biology, 1999, 50(1): 601-639.
[7]FOYER C H, HALLIWELL B. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.
[8]李佳,刘立云,李艳,等. 保水剂对干旱胁迫槟榔幼苗生理特征的影响[J].南方农业学报, 2018,49(1):104-108.
[9]MA J F, YAMAJI N. Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8): 392-397.
[10]SAVVAS D, GIOTIS D, CHATZIEUSTRATIOU E, et al. Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections[J]. Enviromental and Eeperimental Botany, 2009, 65(1): 11-17.
[11]GONG H J, CHEN K M. The regulatory role of silicon on water relations, photosynthetic gas exchange and carboxylation activities of wheat leaves in field drought conditions[J]. Acta Physiologiae Plantarum, 2012, 34(4): 1589-1594.
[12]HATTORI T, INANAGA S, ARAKI H, et al. Application of silicon enhanced drought tolerance in Sorghum bicolor [J]. Physiologia Plantarum, 2005, 123(4): 459-466.
[13]SHEN X F, ZHOU Y Y, DUAN L S, et al. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultravioletB radiation[J]. Journal of Plant Physiology, 2010, 167(15): 1248-1252.
[14]HATTROI T, SONOBE K, INANAGA S, et al. Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress[J]. Journal of Plant Nutrition, 2008, 31(6): 1046-1058.
[15]LOBATO K A S, LUZ L M, COADTO R C L, et al. Relationship between chlorophyll a and total soluble carbohydrates in pepper submitted to water deficiency[J]. Journal of Animal and Plant Sciences, 2009, 5(2): 515-526.
[16]HELALY M N, ELHOSEIN H, IBRAHIMElSHEERY N, et al. Regulation and physiological role of silicon in alleviating drought stress of mango[J]. Plant Physiology and Biochemistry, 2017, 118: 31-44.
[17]麻云霞,李钢铁,张宏武,等. 外源硅对酸枣生长和生理生化特征的影响[J].江苏农业学报,2018,34(5):1113-1119.
[18]杨文杰,吴发启,方丽.陕西省渭北黄土高原苹果发展战略研究[J]. 西北农业学报, 2004, 13(3): 158-161.
[19]殷淑燕,黄春长.黄土高原苹果基地土壤干燥化原因及其对策[J]. 干旱区资源与环境, 2005, 19(2): 76-80.
[20]张亚建,武阿锋,刘存寿,等.不同硅肥处理对苹果树硅及其他中微量元素吸收的影响[J]. 西北农业学报, 2013, 22(10): 126-130.
[21]AVESTAN S, NASERI L A, HASSANZADE A, et al. Effects of nanosilicon dioxide application on in vitro proliferation of apple rootstock[J]. Journal of Plant Nutrition, 2016, 39(6): 850-855.
[22]AVESTAN S, NASERI L A, BARKER V A. Evaluation of nanosilicon dioxide and chitosan on tissue culture of apple under agarinduced osmotic stress[J]. Journal of Plant Nutrition, 2017, 40(20): 2797-2807.
[23]范春丽,赵奇. 硅处理对水分胁迫下的苹果幼树生理特征的影响[J]. 北方园艺, 2016 (5): 30-33.
[24]张菂.干旱胁迫及外源施硅对苹果叶片光合机构的影响[D]. 杨凌: 西北农林科技大学, 2013.
[25]孙山,徐秀玉,程来亮,等. 干旱胁迫下硅对平邑甜茶光合功能的影响[J]. 植物生理学报, 2015, 51(12): 2231-2238.
[26]MICHEL B E, KAUFMANN M R. The osmotic potential of polyethylene glycol 6000[J]. Plant physiology, 1979, 51(5): 914-916.
[27]ELLIOT C L, SNYDER G H. Autoclaveinduced digestion for the colorimetric determination of silicon in rice straw[J]. Journal of Agriculture and Food Chemistry, 1991, 39(6): 1118-1119.
[28]BARRS H D, WEATHERLEY P E. A reexamination of the relative turgidity technique for estimating water deficits in leaves[J]. Australian Journal of Biological Sciences, 1962, 15(3): 413-428.
[29]HEATH R L, PACKER L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198.
[30]LUTTS S, KINER J M, BOUHARMONT J. NaClinduced senescence in leaves of rice (Oryza sativa L.) cultivar differing in salinity resistance[J]. Annals of Botany, 1996, 78(3): 389-398.
[31]THORDALCHRISTENSEN H, ZHANG Z, WEI Y, et al. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barleypowdery mildew interaction[J]. Plant Journal, 1997, 11(6): 1187-1194.
[32]王顺才,邹养军,马锋旺.干旱胁迫对3中苹果属植物叶片解剖结构、微型态特征及叶绿体超微结构的影响[J]. 干旱地区农业研究, 2014, 32(3): 15-23.
[33]LIANG Y, NIKOLIC M, BELANGER R, et al. Silicon in Agriculture: from theory to practice[J]. Ed. Springer Netherlands, 2015, 1-4; 209-210.
[34]CHEN W, YAO X Q, CAI K Z, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Research, 2011, 142(1): 67-76.
[35]SHI Y, ZHANG Y, YAO H, et al. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress[J]. Plant Physiology & Biochemistry, 2014, 78(3): 27-36.
[36]ZHANG W J, XIE Z C, WANG L, et al. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment[J]. Journal of Plant Research, 2017, 130(3): 611-624.
[37]JONES L H P, HaANDREC K A. Silica in soils, plants, and animals[J]. Advances in Agronomy, 1967, 19: 104-149.
[38]MA J F, YAMAJI N, MIAANTI N, et al. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-212.
[39]SAHEBI M, HANAFI M M. Screening and expression of a silicon transporter gene (Lsi1) in wildtype Indica Rice cultivars[J]. BioMed Research International, 2017. doi: 10.1155/2017/906412
[40]CHIBA Y, MITANI N, YAMAJI N, et al. HvLsi1 is a silicon inux transporter in barley[J]. The Plant Journal, 2009, 57(5): 810-818.
[41]刘淑侠, 环境条件对黄瓜硅吸收特征的影响[D]. 泰安: 山东农业大学, 2018.
[42]VATANSEVER R, OZYIGIT I I, FILIZ E, et al. Genomewide exploration of silicon(Si) transporter genes, Lsi1 and Lsi2 in plants; insight into Siaccumulation status/capacity of plants[J]. Biometals, 2017, 30(2): 185-200.
[43]YAMAJI N, MA J F. Further characterization of a rice silicon efflux transporter, Lsi2[J]. Soil Science and Plant Nutrition, 2011, 57(2): 259-264.
[44]HOSSEINIi S A, MAILLARD A, HAJIREZAEI M R, et al. Induction of barley silicon transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated starch and ABA homeostasis under osmotic stress and concomitant potassium deficiency[J]. Frontiers in Plant Science, 2017. doi:10.3389/fpls.2017.01359.
[45]OUZOUNIDOU G, GIANNAKOULA A, ILIAS I, et al. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application[J]. Brazilian Journal of Botany, 2016, 39(2): 531-539.
[46]GUNES A, PILBEAM D J, INAL A, et al. Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress[J]. Journal of Plant Interactions, 2007, 2(2): 105-113.
[47]GUNES A, PILBEAM D J, INAL A, et al. Influence of silicon on sunflower cultivars under drought stress, I: Growth, Antioxidant Mechanisms, and Lipid Peroxidation[J]. Communications in Soil Science and Plant Analysis, 2008, 39(13/14): 1885-1903.
[48]REHEM B C, ALMEIDA A A F, SANTOS I C, et al. Photosynthesis, chloroplast ultrastructure, chemical composition and oxidative stress in Theobroma cacao hybrids with the lethal gene LuteusPa mutant[J]. Photosynthetica, 2011, 49(1): 127-139.
相似文献/References:
[1]施雅青,郑耀通.活性氧在黄孢原毛平革菌产木质素过氧化物酶中的调控机制[J].江苏农业学报,2016,(03):514.[doi:10.3969/j.issn.1000-4440.2016.03.005]
SHI Ya-qing,ZHENG Yao-tong.Regulation mechanism of reactive oxygen species in the lignin peroxidase production of Phanerochaete chrysosporium[J].,2016,(04):514.[doi:10.3969/j.issn.1000-4440.2016.03.005]
[2]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(04):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[3]蒋正宁,赵仁慧,吴旭江,等.簇毛麦谷胱甘肽硫转移酶基因HvGSTF 的原核表达与酶活性鉴定[J].江苏农业学报,2016,(06):1219.[doi:doi:10.3969/j.issn.1000-4440.2016.06.004]
JIANG Zheng-ning,ZHAO Ren-hui,WU Xu-jiang,et al.Prokaryotic expression of a glutathione S-transferase gene HvGSTF from Haynaldia villosa and the enzyme activity[J].,2016,(04):1219.[doi:doi:10.3969/j.issn.1000-4440.2016.06.004]
[4]徐海,宋波,顾宗福,等.植物耐热机理研究进展[J].江苏农业学报,2020,(01):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
XU Hai,SONG Bo,GU Zong-fu,et al.Advances in heat tolerance mechanisms of plants[J].,2020,(04):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
[5]倪萌,王娟,王爽,等.克服萝卜自交不亲和性的化学试剂筛选[J].江苏农业学报,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
NI Meng,WANG Juan,WANG Shuang,et al.Screening of chemical reagents for overcoming the self-incompatibility of radish[J].,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
[6]张铭芳,李卉,韩东洋,等.不同百合种质资源对灰霉病的抗性[J].江苏农业学报,2022,38(04):1078.[doi:doi:10.3969/j.issn.1000-4440.2022.04.026]
ZHANG Ming-fang,LI Hui,HAN Dong-yang,et al.Resistance of different lily germplasm resources to Botrytis cinerea[J].,2022,38(04):1078.[doi:doi:10.3969/j.issn.1000-4440.2022.04.026]