参考文献/References:
[1]刘威,袁丁,郭桂义,等. 茶树炭疽病病原鉴定[J]. 南方农业学报 ,2017,48(3):448-453.
[2]王国君,陈利军,熊建伟,等.对茶树炭疽病病菌具拮抗怍用根际促生细菌的分离、筛选及鉴定[J].江苏农业科学,2017,45(11):76-78.
[3]张强,杨云祥,唐方圆,等. 茶树主要病害及防治措施研究[J]. 中国农业信息, 2015(12):80-81.
[4]赖军臣,李少昆,明博,等. 作物病害机器视觉诊断研究进展[J]. 中国农业科学, 2009, 42(4):1215-1221.
[5]赵建敏,薛晓波,李琦.基于机器视觉的马铃薯病害识别系统[J].江苏农业科学,2017,45(2):198-202.
[6]李彦冬,郝宗波,雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9):2508-2515.
[7]MOHANTY S P, HUGHES D P, SALATH M. Using deep learning for image-based plant disease detection [J]. Frontiers in Plant Science, 2016, 22(7):1-10.
[8]杨晋丹,杨涛,苗腾,等. 基于卷积神经网络的草莓叶部白粉病病害识别[J]. 江苏农业学报, 2018, 34(3):527-532.
[9]CRUZ A C, LUVISI A, BELLIS L D, et al. Vision-based plant disease detection system using transfer and deep learning[C]. Spokane, Washington: American Society of Agricultural and Biological Engineers, 2017:1-9.
[10]AMARA J, BOUAZIZ B, ALGERGAWY A, et al. A deep learning-based approach for banana leaf diseases classification[C]. B. Mitschang, Bonn: Lecture Notes in Informatics, 2017:79-88.
[11]张善文,谢泽奇,张晴晴. 卷积神经网络在黄瓜叶部病害识别中的应用[J]. 江苏农业学报, 2018, 34(1):56-61.
[12]BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: classification and dymptoms visualization[J]. Applied Artificial Intelligence, 2017,31 (4):299-315.
[13]LIU S, DENG W. Very deep convolutional neural network based image classification using small training sample size[C].Kuala Lumpur, Malaysia: Asian Conference on Pattern Recognition (ACPR), 2016:730-734.
[14]孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19):209-215.
[15]SRDJAN S, MARKO A, ANDRAS A, et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience, 2016, 2016(6):1-11.
[16]吴翔. 基于机器视觉的害虫识别方法研究[D]. 杭州:浙江大学, 2016.
[17]LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep laplacian pyramid networks [J] Computer Vision and Pattern Recognition, 2017, 99:1-14.
[18]YI Y, XI C, DI Z, et al. Deep recursive super resolution network with laplacian pyramid for better agricultural pest surveillance and detection [J]. Computers & Electronics in Agriculture, 2018, 150:26-32.
[19]杨国国,鲍一丹,刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6):156-162.
[20]WU Z, HU Z, FAN Q. Superpixel-Based unsupervised change detection using multi-dimensional change vector analysis and svm-based classification[J]. Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 1(7):257-262.
[21]HOOCHANG S, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1285.
[22]ZHAO B, WANG M, LIU M. An energy-efficient coarse grained spatial architecture for convolutional neural networks AlexNet[J]. Ieice Electronics Express, 2017, 14(15):1-12.
[23]TANG J L, WANG D, ZHANG Z G, et al. Weed identification based on K-means feature learning combined with convolutional neural network [J]. Computers & Electronics in Agriculture, 2017, 135:63-70.
[24]TANG J L, WANG D, ZHANG Z G, et al. Weed identification based on K-means feature learning combined with convolutional neural network [J]. Computers & Electronics in Agriculture, 2017, 135:63-70.
[25]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C].Long Beach, CA, USA: International Conference on Neural Information Processing Systems, MIT Press, 2012:1097-1105.
[26]卢蓉,范勇,陈念年,等. 一种提取目标图像最小外接矩形的快速算法[J]. 计算机工程, 2010, 36(21):178-180.
[27]HARRIS J L. Diffraction and resolving power [J]. J Opt Soc Am, 1964, 54(7):931-933.
[28]ANBARJAFARI G, DEMIREL H. Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image[J]. ETRI Journal, 2010, 32(3):390-394.
[29]王会鹏,周利莉,张杰. 一种基于区域的双三次图像插值算法[J]. 计算机工程, 2010, 36(19):216-218.
相似文献/References:
[1]邱洪涛,孙裴,侯金波,等.基于Caffe的猪肉新鲜度分级的设计与实现[J].江苏农业学报,2019,(02):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
QIU Hong-tao,SUN Pei,HOU Jin-bo,et al.Design and implementation of pork freshness grading based on Caffe[J].,2019,(01):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
[2]牛学德,高丙朋,南新元,等.基于改进DenseNet卷积神经网络的番茄叶片病害检测[J].江苏农业学报,2022,38(01):129.[doi:doi:10.3969/j.issn.1000-4440.2022.01.015]
NIU Xue-de,GAO Bing-peng,NAN Xin-yuan,et al.Detection of tomato leaf disease based on improved DenseNet convolutional neural network[J].,2022,38(01):129.[doi:doi:10.3969/j.issn.1000-4440.2022.01.015]
[3]梁凯博,孙立,汪禹治,等.基于超轻量化卷积神经网络的番茄病虫害诊断[J].江苏农业学报,2024,(03):438.[doi:doi:10.3969/j.issn.1000-4440.2024.03.006]
LIANG Kai-bo,SUN Li,WANG Yu-zhi,et al.Diagnosis of tomato pests and diseases based on super lightweight convolutional neural network[J].,2024,(01):438.[doi:doi:10.3969/j.issn.1000-4440.2024.03.006]