[1]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036-1041.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(05):1036-1041.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
点击复制

基于冠层高光谱数据与马氏距离的马铃薯品种识别()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年05期
页码:
1036-1041
栏目:
耕作栽培·资源环境
出版日期:
2018-10-25

文章信息/Info

Title:
Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance
作者:
王卓卓1何英彬12罗善军1段丁丁1张远涛1朱娅秋1于金宽2张胜利3徐飞3孙静3
(1.天津工业大学管理学院,天津300387;2.中国农业科学院农业资源与农业区划研究所,北京100081;3.吉林省蔬菜花卉科学研究院,吉林长春130033)
Author(s):
WANG Zhuo-zhuo1HE Ying-bin12LUO Shan-jun1DUAN Ding-ding2ZHANG Yuan-tao1ZHU Ya-qiu1YU Jin-kuan2ZHANG Sheng-li3XU Fei3SUN Jing3
(1.School of Management, Tianjin Polytechnic University, Tianjin 300387, China;2.Institute of Agricultural Resources and Agricultural Zoning of Chinese Academy of Agricultural Sciences, Beijing 100081, China;3.Academy of Vegetable and Flower Sciences of Jilin Province, Changchun 130033, China)
关键词:
高光谱马氏距离马铃薯品种识别
Keywords:
hyperspectralMahalanobis distancepotatovariety identification
分类号:
TP79
DOI:
doi:10.3969/j.issn.1000-4440.2018.05.010
文献标志码:
A
摘要:
为丰富高光谱数据在精细农业中的应用,本研究基于冠层光谱数据进行不同马铃薯品种区分研究。利用田间实测的6-8月的马铃薯原始光谱数据以及经过一阶微分、对数一阶微分、包络线去除处理后的光谱,采用马氏距离法选择3种马铃薯光谱差异显著波段,再利用逐步判别法检验波段识别精度。结果表明,7月份经过对数一阶微分变换选取的特征波段识别精度最高,达87.7%。不同生育期内,多种预处理方法下的光谱识别能力有差异。6月份包络线去除法的识别精度最高,7月份对数一阶微分处理下的识别精度最高,而8月份原始光谱的识别精度最高。提取的特征波段多位于红光及近红外波段。研究结果表明基于高光谱数据,借助马氏距离与逐步判别法可以区分马铃薯品种。
Abstract:
In order to enrich the application of hyper-spectral data in precision agriculture, this study attempts to distinguish potato varieties based on canopy spectral data. Based on the field measured data of the original spectra of potato from June to August, and the spectra processed by the first order differential, logarithmic first order differential and continuous removal, the method of Mahalanobis distance and stepwise discriminant were used to select characteristic bands for variety identification. The result showed that feature bands extracted from the spectra of the logarithmic first order differential transformation in July had the highest recognition accuracy of 87.7%. The recognition ability of different preprocessing spectra was different in growth stages. In June, the accuracy of continuous removal was the highest, and the accuracy of logarithmic first order differential treatment in July was the highest, while the original spectrum in August had the highest accuracy. The extracted characteristic bands were mostly in red and near infrared bands. This study shows that based on hyperspectral data, potato varieties can be distinguished by Mahalanobis distance and stepwise discriminant method.

参考文献/References:

[1]ZOMER R J,TRABUCCO A,USTIN S L.Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing[J].Journal of Environmental Management,2009,90(7):2170-2177.
[2]孟禹弛,侯学会,王猛.不同生育期冬小麦叶面积指数高光谱遥感估算模型[J]. 江苏农业科学,2017,45(5):211-215.
[3]王秀珍,黄敬峰,李云梅,等.高光谱数据与水稻农学参数之间的相关分析[J].浙江大学学报(农业与生命科学版),2002,28(3):283-288.
[4]李永梅,张立根,张学俭.水稻叶片高光谱响应特征及氮素估算[J]. 江苏农业科学,2017,45(23):210-213.
[5]唐延林,黄敬峰.农业高光谱遥感研究的现状与发展趋势[J].遥感技术与应用,2001,16(4):248-251.
[6]NIDAMANURI R R,ZBELL B.Use of field reflectance data for crop mapping using airborne hyperspectral image[J].Isprs Journal of Photogrammetry & Remote Sensing,2011,66(5):683-691.
[7]何友铸,张振乾,官春云.高光谱遥感技术在精细农业监测上的应用及展望[J].作物研究,2015,29(1):96-100.
[8]张富华,黄明祥,张晶,等.利用高光谱识别草地种类的研究——以锡林郭勒草原为例[J].测绘通报,2014(7):66-69.
[9]魏秀红,靳瑰丽,范燕敏,等.伊犁绢蒿荒漠草地物种光谱特征分析及识别初探[J]. 草业科学,2016,33(10):1924-1932.
[10]文畅平,白银涌,曾娟娟,等.天然草地分类的Bayes判别分析法[J].中国草地学报, 2016,38(3):50-55.
[11]齐浩,王振锡,岳俊,等.基于叶片光谱特征的南疆盆地主栽果树树种遥感识别[J].浙江农业学报,2015,27(12):2141-2146.
[12]王志辉,丁丽霞.基于叶片高光谱特性分析的树种识别[J].光谱学与光谱分析,2010,30(7):1825-1829.
[13]林海军,张绘芳,高亚琪,等.基于马氏距离法的荒漠树种高光谱识别[J].光谱学与光谱分析,2014,34(12):3358-3362.
[14]舒田,岳延滨,李莉婕,等.基于高光谱遥感的农作物识别[J].江苏农业学报,2016,32(6):1310-1314.
[15]王岽,吴见.农作物种类高光谱遥感识别研究[J].地理与地理信息科学,2015,31(2):29-33.
[16]张丰,熊桢,寇宁. 高光谱遥感数据用于水稻精细分类研究[J].武汉理工大学学报,2002,24(10):36-39.
[17]周竹,李小昱,陶海龙,等.基于高光谱成像技术的马铃薯外部缺陷检测[J].农业工程学报,2012,28(21):221-228.
[18]李小昱,库静,颜伊芸,等.基于高光谱成像的绿皮马铃薯检测方法[J].农业机械学报,2016,47(3):228-233.
[19]王丽艳,薛河儒,王洪南.高光谱数据降维对马铃薯分类的影响[J].江苏农业科学,2017,45(18):229-232.
[20]胡耀华,平学文,徐明珠,等.高光谱技术诊断马铃薯叶片晚疫病的研究[J].光谱学与光谱分析,2016,36(2):515-519.
[21]何彩莲,郑顺林,周少猛,等.基于高光谱植被指数的马铃薯叶片叶绿素含量估测模型[J].华南农业大学学报,2016,37(5):45-49.
[22]孙红,郑涛,刘宁,等.高光谱图像检测马铃薯植株叶绿素含量垂直分布[J]. 农业工程学报,2018,34(1): 149-156.
[23]何彩莲,郑顺林,万年鑫,等.马铃薯光谱及数字图像特征参数对氮素水平的响应及其应用[J].光谱学与光谱分析,2016,36(9):2930-2936.
[24]丁丽霞,王志辉,葛宏立.基于包络线法的不同树种叶片高光谱特征分析[J].浙江农林大学学报,2010,27(6):809-814.
[25]钟清流,蔡自兴.基于统计特征的时序数据符号化算法[J].计算机学报,2008,31(10):1857-1864.
[26]贾坤,李强子.农作物遥感分类特征变量选择研究现状与展望[J].资源科学,2013,35(12):2507-2516.
[27]刘秀英,臧卓,孙华,等.基于高光谱数据的杉木和马尾松识别研究[J].中南林业科技大学学报,2011,31(11):30-33.
[28]况润元,曾帅,赵哲.基于实测高光谱数据的鄱阳湖湿地植被光谱差异波段提取[J].湖泊科学,2017,29(6):1485-1490.
[29]陈永刚,丁丽霞,葛宏立,等.基于均值置信区间带的高光谱特征波段选择与树种识别[J].光谱学与光谱分析,2011,31(9):2462-2466.
[30]胡远宁,崔霞,孟宝平,等.甘南高寒草甸主要毒杂草光谱特征分析[J].草业科学,2015,32(2):160-167.

相似文献/References:

[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
 LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[3]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
 LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(05):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[4]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
 WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(05):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
[5]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
 ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(05):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[6]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
 MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(05):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
[7]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[8]潘月,曹宏鑫,齐家国,等.基于高光谱和数据挖掘的油菜植株含水率定量监测模型[J].江苏农业学报,2022,38(06):1550.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
 PAN Yue,CAO Hong-xin,QI Jia-guo,et al.Quantitative monitoring models of plant water content in rapeseed based on hyperspectrum and related data mining[J].,2022,38(05):1550.[doi:doi:10.3969/j.issn.1000-4440.2022.06.013]
[9]樊泳灼,李新国.湖滨绿洲棕漠土有机碳含量高光谱估算[J].江苏农业学报,2023,(06):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]
 FAN Yong-zhuo,LI Xin-guo.Hyperspectral prediction of organic carbon content of brown desert soil in the lakeside oasis[J].,2023,(05):1341.[doi:doi:10.3969/j.issn.1000-4440.2023.06.009]
[10]郑智康,常庆瑞,符欣彤,等.基于变换光谱与光谱指数的夏玉米叶片含水率高光谱估算[J].江苏农业学报,2023,(09):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]
 ZHENG Zhi-kang,CHANG Qing-rui,FU Xin-tong,et al.Hyperspectral estimation of leaf water content of summer maize based on transformed spectrum and spectral index[J].,2023,(05):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]

备注/Memo

备注/Memo:
收稿日期:2018-05-07 基金项目:国家自然科学基金面上项目( 41771562);中国农业科学院创新工程项目(IARRP 2017-727-1) 作者简介:王卓卓(1992-),女,宁夏固原人,硕士研究生,主要从事农业遥感方面的研究。(E-mail)1040644098@qq.com 通讯作者:何英彬,(E-mail)heyingbin@caas.cn
更新日期/Last Update: 2018-11-05