[1]苏赵,胡凯弟,朱佳雯,等.地衣芽孢杆菌B-1降解西维因的环境条件[J].江苏农业学报,2018,(03):585-590.[doi:doi:10.3969/j.issn.1000-4440.2018.03.015]
 SU Zhao,HU Kai-di,ZHU Jia-wen,et al.Environmental conditions of carbaryl degradation by Bacillus licheniformis B-1[J].,2018,(03):585-590.[doi:doi:10.3969/j.issn.1000-4440.2018.03.015]
点击复制

地衣芽孢杆菌B-1降解西维因的环境条件()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年03期
页码:
585-590
栏目:
耕作栽培·资源环境
出版日期:
2018-06-25

文章信息/Info

Title:
Environmental conditions of carbaryl degradation by Bacillus licheniformis B-1
作者:
苏赵1胡凯弟1朱佳雯1王兴洁1刘书亮12
(1.四川农业大学食品学院,四川雅安625014;2.四川农业大学食品加工与安全研究所,四川雅安625014)
Author(s):
SU Zhao1HU Kai-di1ZHU Jia-wen1WANG Xing-jie1LIU Shu-liang12
(1.College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;2.Research Institute of Food Processing and Security, Sichuan Agricultural University, Ya’an 625014, China)
关键词:
地衣芽孢杆菌西维因降解环境修复
Keywords:
Bacillus licheniformiscarbaryldegradationenvironmental remediation
分类号:
X592
DOI:
doi:10.3969/j.issn.1000-4440.2018.03.015
文献标志码:
A
摘要:
以地衣芽孢杆菌B-1(Bacillus licheniformisB-1) 为材料,采用HPLC测定不同微生物培养体系中西维因(Carbaryl)残留量,并考察菌株B-1降解谱,探究其对西维因的降解特性。结果表明,菌株B-1对西维因的降解率与其生长呈正相关,在LB培养基中培养72 h对100 mg/L西维因的降解率为91.21%。较高的温度和碱性环境有利于西维因的降解,而较高底物质量浓度和盐质量浓度均对菌株B-1的生长及西维因的降解有负面影响;Ca2+、Fe2+、Mn2+、Mg2+对其降解西维因有不同程度的刺激作用,Cu2+则有抑制作用。此外,菌株B-1对20 mg/L的丁硫克百威、叶蝉散和毒死蜱均有不同程度的降解作用。HPLC分析结果表明,初步确定1-萘酚是菌株B-1降解西维因的中间产物,且该菌株在LB培养基中培养72 h对20 mg/L 1-萘酚的降解率为48.70%。可见,菌株B-1能高效降解西维因和其他多类杀虫剂,具有一定的广谱性,可应用于环境修复。
Abstract:
Degradation characteristics of carbaryl by strain Bacillus licheniformis B-1 were studied. Concentrations of carbaryl residue in different microbial culture systems were determined through HPLC, and degradation spectrum of strain B-1 was explored. The results showed that degradation of carbaryl had a positive correlation with the growth of strain B-1. Degradation rate reached up to 91.21% when the strain was cultured in LB medium with 100 mg/L carbaryl for 72 h. Higher temperatures and alkaline circumstance were advantageous for degradation of carbaryl. Simultaneously, growth of strain B-1 and carbaryl degradation were inhibited with increasing substrate concentrations or salinity. Carbaryl degradation were stimulated when treating with metal ions such as Ca2+, Fe2+, Mn2+, Mg2+, whereas inhibited by Cu2+. In addition, this strain had degradation effect on 20 mg/L carbosulfan, isoprocarb and chlorpyrifos with different rate. HPLC results showed that 1-naphthol was an intermediate product of carbaryl, and strain B-1 could degrade 48.70% of 1-naphthol (20 mg/L) in LB medium after 72 h incubation. In conclusion, strain B-1 can efficiently degrade carbaryl and other kinds of insecticides, which shows that strain B-1 possesses a wide-spectrum degrading activity and potential for environmental remediation.

参考文献/References:

[1]KOSHLUKOVA S E, REED N R. Carbaryl[M]//WEXLER P. Encyclopedia of toxicology. 3rd ed. Amsterdam: Elsevier, 2014: 668-672.
[2]GUNASEKARA A S, RUBIN A L, GOH K S, et al. Environmental fate and toxicology of carbaryl[M]//WHITACRE D M. Reviews of environmental contamination and toxicology. New York: Springer, 2008: 95-121.
[3]TOUMI H, BURGA-PEREZ K F, FERARD J F. Acute and chronic ecotoxicity of carbaryl with a battery of aquatic bioassays[J]. Journal of Environmental Science and Health, Part B, 2016, 51(1): 57-62.
[4]HAWKER D. Kinetics of carbaryl hydrolysis: An undergraduate environmental chemistry laboratory[J]. Journal of Chemical Education, 2015, 92(9): 1531-1535.
[5]MOTTES C, LESUEUR-JANNOYER M, LE BAIL M, et al. Pesticide transfer models in crop and watershed systems: a review[J]. Agronomy for Sustainable Development, 2014, 34(1): 229-250.
[6]KATAGI T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms[M]//WHITACRE D M. Reviews of environmental contamination and toxicology. New York: Springer, 2010: 1-132.
[7]GILLIOM R J, HAMILTON P A. Pesticides in the nation's streams and ground water, 1992-2001-a summary[R]. Sacramento: U.S. Geological Survey, 2006.
[8]SHAMSIPUR M, YAZDANFAR N, GHAMBARIAN M. Combination of solid-phase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice[J]. Food Chemistry, 2016, 204: 289-297.
[9]KHOOBDEL M, SHAYEGHI M, GOLSORKHI S, et al. Effectiveness of ultrasound and ultraviolet irradiation on degradation of carbaryl from aqueous solutions[J]. Iranian Journal of Arthropod-Borne Diseases, 2010, 4(1): 47.
[10]KONG L J, LEMLEY A T. Effect of nonionic surfactants on the oxidation of carbaryl by anodic Fenton treatment[J]. Water Research, 2007, 41(12): 2794-2802.
[11]SWETHA V P, PHALE P S. Metabolism of carbaryl via 1, 2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5, and C6[J]. Applied and Environmental Microbiology, 2005, 71(10): 5951-5956.
[12]HAYATSU M, HIRANO M, NAGATA T. Involvement of two plasmids in the degradation of carbaryl by Arthrobacter sp. strain RC100[J]. Applied and Environmental Microbiology, 1999, 65(3): 1015-1019.
[13]YAN Q X, WANG Y X, LI S P, et al. Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(12): 2724-2728.
[14]DODDAMANI H P, NINNEKAR H Z. Biodegradation of carbaryl by a Micrococcus species[J]. Current Microbiology, 2001, 43(1): 69-73.
[15]HASHIMOTO M, FUKUI M, HAYANO K, et al. Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100[J]. Applied and Environmental Microbiology, 2002, 68(3): 1220-1227.
[16]ZHANG Q, LIU Y, LIU Y H. Purification and characterization of a novel carbaryl hydrolase from Aspergillus niger PY168[J]. FEMS Microbiology Letters, 2003, 228(1): 39-44.
[17]YANG L, CHEN S H, HU M Y, et al. Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils[J]. Biology and Fertility of Soils, 2011, 47(8): 917-923.
[18]MEN J, CHENG F. Biodegradation and growth characteristics of a toluene-degrading strain[J]. African Journal of Biotechnology, 2011, 10(61): 13299-13306.
[19]FENNER K, CANONICA S, WACKETT LP, et al. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities[J]. Science, 2013, 341(6147): 752-758.
[20]赖文,刘书亮,赵楠, 等. 氯氰菊酯高效降解菌的筛选鉴定及其降解特性[J]. 食品科学, 2012, 33(21): 157-163.
[21]LIU K H, KIM J H. In vitro dermal penetration study of carbofuran, carbosulfan, and furathiocarb[J]. Archives of Toxicology, 2003, 77(5): 255-260.
[22]HASSANZADEH N, BAHRAMIFAR N, ESMAILI-SARI A. Residue content of carbaryl applied on greenhouse cucumbers and its reduction by duration of a pre-harvest interval and post-harvest household processing[J]. Journal of the Science of Food and Agriculture, 2010, 90(13): 2249-2253.
[23]DELORENZO M E, SCOTT G I, ROSS P E. Toxicity of pesticides to aquatic microorganisms: a review[J]. Environmental Toxicology and Chemistry, 2001, 20(1): 84-98.
[24]LIMA M P R, CARDOSO D N, SOARES A M V M, et al. Carbaryl toxicity prediction to soil organisms under high and low temperature regimes[J]. Ecotoxicology and Environmental Safety, 2015, 114: 263-272.
[25]董滨,王凤花,林爱军,等. 乙草胺降解菌A-3的筛选及其降解特性[J]. 环境科学, 2011, 32(2): 542-547.
[26]SILVER S, PHUNG L T. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions[J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(11/12): 587-605.
[27]邓维琴,刘书亮,姚开,等. 3-苯氧基苯甲酸降解菌Sphingomonas sp.SC-1降解苯酚环境条件及其降解中间产物的研究[J]. 微生物学通报, 2015, 42(3): 497-503.
[28]UYANIK A, ZDEMIR M. Effect of the environmental temperature on the degradation period of carbaryl[J]. Turkish Journal of Agriculture and Forestry, 1999, 23(6): 579-584.
[29]JIRIES A G, AL NASIR F M, BEESE F. Pesticide and heavy metals residue in wastewater, soil and plants in wastewater disposal site near Al-Lajoun Valley, Karak/Jordan[J]. Water, Air, & Soil Pollution, 2002, 133(1): 97-107.
[30]TALLUR P N, MEGADI V B, NINNEKAR H Z. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1[J]. Biodegradation, 2008, 19(1): 77-82.
[31]CHEN S H, CHANG C Q, DENG Y Y, et al. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2147-2157.
[32]SINGH B K, WALKER A. Microbial degradation of organophosphorus compounds[J]. FEMS Microbiology Reviews, 2006, 30(3): 428-471.
[33]SOGORB M A, VILANOVA E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis[J]. Toxicology Letters, 2002, 128(1): 215-228.
[34]ROSS M K, STREIT T M, HERRING K L, et al. Carboxylesterases: dual roles in lipid and pesticide metabolism[J]. Journal of Pesticide Science, 2010, 35(3): 257-264.

备注/Memo

备注/Memo:
收稿日期:2017-08-13 基金项目:四川省农业科技成果转化基金项目(14NZ0012) 作者简介:苏赵(1959-),男,四川雅安人,大学,实验师,主要从事食品加工与安全方面的教学和科研工作。(Tel)0835-2882187 通讯作者:刘书亮,(E-mail)lsliang999@163.com
更新日期/Last Update: 2018-07-04