[1]李华山,雷鹏,许宗奇,等.耐盐促生菌Agrobacterium sp. DF-2增强黄瓜幼苗耐盐性的研究[J].江苏农业学报,2017,(03):654-661.[doi:doi:10.3969/j.issn.1000-4440.2017.03.025]
 LI Hua-shan,LEI Peng,XU Zong-qi,et al.Halotolerance in cucumber seedlings enhanced by plant growth-promoting rhizobacterium Agrobacterium sp. DF-2[J].,2017,(03):654-661.[doi:doi:10.3969/j.issn.1000-4440.2017.03.025]
点击复制

耐盐促生菌Agrobacterium sp. DF-2增强黄瓜幼苗耐盐性的研究()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年03期
页码:
654-661
栏目:
园艺
出版日期:
2017-06-30

文章信息/Info

Title:
Halotolerance in cucumber seedlings enhanced by plant growth-promoting rhizobacterium Agrobacterium sp. DF-2
作者:
李华山1雷鹏1许宗奇1冯小海1徐虹1马洪波2
(1.南京工业大学食品与轻工学院,江苏南京211816;2.江苏省农业科学院农业资源与环境研究所,江苏南京210014)
Author(s):
LI Hua-shan1LEI Peng1XU Zong-qi1FENG Xiao-hai1XU Hong1MA Hong-bo2
(1.College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;2.Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
耐盐促生菌耐盐性ACC脱氨酶K+/Na+值抗氧化酶脯氨酸积累
Keywords:
Agrobacterium sp.salt toleranceACC deaminase K+/Na+ ratioantioxidant enzyme activityproline accumulation
分类号:
S642.2
DOI:
doi:10.3969/j.issn.1000-4440.2017.03.025
文献标志码:
A
摘要:
本研究从盐碱区域植物根际土壤中筛选到1株具有较高ACC脱氨酶活性
[405.17 nmol/(g·h) ]的耐盐促生菌 Agrobacterium sp.DF-2。除ACC脱氨酶活性外,菌株还具有降解不溶磷活性,产生植物生长激素IAA,产胞外多糖等特性。此外,菌株可耐受最高8% NaCl浓度胁迫,证明其可应用到盐碱土壤中。通过盆栽试验研究了在75 mmol/L NaCl 盐胁迫下接种DF-2对黄瓜幼苗的生长的影响以及作用机理。结果表明,与盐胁迫处理相比,接种DF-2处理幼苗株高、根长、生物量积累以及叶绿素含量分别显著增加1508%、3435%、1310%和2258%。同时,DF-2也增强宿主植物对K+的吸收,提高抗氧化酶活性和脯氨酸含量;降低对Na+的吸收和丙二醛含量。菌株DF-2主要通过高效的ACC脱氨酶活性,调控K+/Na+值,增强细胞清除活性氧能力和渗透调节能力等途径增强黄瓜幼苗的耐盐性。因此,耐盐促生菌Agrobacterium sp.DF-2具有作为生物肥料用于盐渍土的潜力。
Abstract:
An Agrobacterium sp.DF-2 with high 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was isolated from the rhizosphere of saline soil. Apart from producing ACC deaminase, the strain exhibited the plant growth-promoting traits of phosphorus-solubilizing activity and yielded IAA and exopolysaccharide. It could tolerate up to 8% NaCl concentration (w/v) stress, indicating its potential for applications to saline soil. The effects of DF-2 inoculation on the growth and physiological responses of cucumber seedlings under salt stress and the mechanism were investigated by pot experiment. Compared to control plants under salt stress, inoculation with DF-2 significantly increased shoot, root and plant biomass and chlorophyll content by 1508%, 3435%, 1310% and 2258%, respectively. Moreover, DF-2 boosted the uptake of K+, antioxidant enzyme activity and proline content, and reduced the uptake of Na+ and malondialdehyde content in the host plant. In conclusion, DF-2 enhanced cucumber seedlings salt tolerance through superior ACC deaminase activity, regulation of K+/Na+ ratio, enhancement of ROS scavenging capacity and an osmotic adjustment ability of cucumber cells. The halotolerant Agrobacterium sp.DF-2 offers great potential for the use as a biological fertilizer in saline soil agriculture to advance sustainable development.

参考文献/References:

[1]ETESAMI H, HOSSEINI H M, ALIKHANI H A, et al. Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings[J]. Journal of Plant Growth Regulation, 2014, 33(3): 654-670.
[2]BUI E N. Soil salinity: a neglected factor in plant ecology and biogeography[J]. Journal of Arid Environments, 2013, 92:14-25.
[3]LAKHDAR A, RABHI M, GHNAYA T, et al. Effectiveness of compost use in salt-affected soil[J]. Journal of Hazardous Materials, 2009, 171(1-3): 29-37.
[4]韩金龙,李慧,蔺经,等. 核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J]. 江苏农业学报,2015,31(4):893-898.
[5]韩金龙,李慧,蔺经,等.钙对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业科学,2016,44(6):245-248.
[6]LEI P, XU Z, LIANG J, et al. Poly(γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L.[J]. Plant Growth Regulation, 2016, 78(2): 1-9.
[7]孙验玲 ,徐远超,李帅, 等. 玉米耐受盐胁迫的调控机理研究进展[J].  山东农业科学,2016,48(11):157-153.
[8]呼红梅,王莉.氮、磷、钾对盐胁迫谷子幼苗形态和生理指标的影响[J].江苏农业科学,2016,44(2):117-122.
[9]孙伟,郑崇珂,解丽霞,等. 水稻对盐胁迫的生理和分子反应研究进展[J].  山东农业科学,2016,48(4):148-153.
[10]MAATHUIS F J M, AHMAD I, PATISHTAN J. Regulation of Na+ fluxes in plants[J]. Frontiers in Plant Science, 2014, 5: 467.
[11]ZHOU G, WANG Y, ZHAI S, et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23[J]. Applied Microbiology and Biotechnology, 2013, 97(9): 4065-4074.
[12]刘永锋,陆凡,陈志谊,等. 拮抗细菌T429和T392的生物活性及其对水稻白叶枯病的防治效果[J]. 江苏农业学报,2012, 28(4): 733-737.
[13]NAVEED M, QURESHI M A, ZAHIR Z A, et al. L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN[J]. Annals of Microbiology, 2015, 65(3): 1381-1389.
[14]ETESAMI H, ALIKHANI H A, HOSSEINI H M. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents[J]. Methods X, 2015, 2: 72-78.
[15]张云霞,雷鹏,许宗奇,等. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响[J]. 江苏农业学报,2016, 32(5): 1073-1080.
[16]MINAH M, BAHARUDDIN, SUBAIR H, et al. Isolation and screening bacterial exopolysaccharide (EPS) from potato rhizosphere in highland and the potential as a producer indole acetic acid (IAA)[J]. Science Direct, 2015(6): 74-81.
[17]SINGH R P, JHA P, JHA P N. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress[J]. Journal of Plant Physiology, 2015, 184: 57-67.
[18]PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia Plantarum, 2003, 118(1): 10-15.
[19]RAJPUT L, IMRAN A, MUBEEN F, et al. Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil[J]. Pakistan Journal of Botany, 2013, 45(6): 1955-1962.
[20]DASTAGER S G, DEEPA C K, PANDEY A. Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea[J]. Plant Physiology and Biochemistry, 2010, 48(12): 987-992.
[21]GORDON S A, WEBER R P. Colorimetric estimation of IAA[J]. Plant Physiology, 1951, 26(1): 192-195.
[22]HOLBROOK A A, EDGE W J W, BAILEY F. Spectrophotometric method for determination of gibberellic acid[M]. Washington: The American Chemical Society Publications, 1961: 159-167.
[23]MACHUCA A, MILAGRES A M. Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus[J]. Letters in Applied Microbiology, 2003, 36(3): 177-181.
[24]张青,张天民. 苯酚-硫酸比色法测定多糖含量[J]. 山东食品科技,2004, 6(7): 17-18.
[25]ZHAO L, ZHANG Y. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress[J]. Journal of Integrative Agriculture, 2015, 14(8): 1588-1597.
[26]HOAGLAND D R, BROYER T C. General nature of the process of salt accumulation by roots with description of experimental methods[J]. Plant Physiology, 1936, 11(11): 471-507.
[27]张宪政. 植物叶绿素含量测定——丙酮乙醇混合液法[J]. 辽宁农业科学,1986(3): 28-30.
[28]赵世杰,许长成,邹琦,等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学报,1994(3): 207-210.
[29]朱广廉,邓兴旺,左卫能. 植物体内游离脯氨酸的测定[J]. 植物生理学报,1983(1): 37-39.
[30]尹干,李慧明,陈健,等. 外源一氧化氮对微囊藻毒素诱导青菜氧化胁迫的缓解[J]. 江苏农业学报,2015, 31(2): 253-259.
[31]潘世驹,李红宇,姜玉伟,等. 寒地水稻幼苗期耐盐资源筛选[J]. 南方农业学报,2015,46(10):1775-1779.
[32]SHAHZAD S M, KHALID A, ARSHAD M, et al. Improving nodulation, gronide wth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture[J]. European Journal of Soil Biology, 2010, 46(5): 342-347.
[33]SALEEM M, ARSHAD M, HUSSAIN S, et al. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture[J]. Journal of Industrial Microbiology & Biotechnology, 2007, 34(10): 635-648.
[34]SIDDIKEE M A, GLICK B R, CHAUHAN P S, et al. Enhancement of growth and salt tolerance of red pepper seedlings ( Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity[J]. Plant Physiology & Biochemistry, 2011, 49(4): 427-434.
[35]DONG K, HAN H S, LEE K D, et al. Corresponding author: plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity[J]. Research Journal of Agriculture & Biological Sciences, 2005,1(3): 210-215.
[36]CHENG Z, PARK E, GLICK B R. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt[J]. Canadian Journal of Microbiology, 2007, 53(7): 912-918.
[37]MAYAK S, TIROSH T, GLICK B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiology and Biochemistry, 2004, 42(6): 565-572.
[38]ASHRAF M, HASNAIN S, BERGE O, et al. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress.[J]. Biology and Fertility of Soils, 2004, 40(3): 157-162.
[39]DOLATABADIAN A, SAMM S, CHASHMI N A. The effects of foliar application of ascorbic acid (Vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of Canola (Brassica napus L.) under conditions of salt stress[J]. Journal of Agronomy and Crop Science, 2008, 194(3): 206-213.

相似文献/References:

[1]刘雅辉,王秀萍,鲁雪林,等.棉花耐盐相关序列扩增多态性(SRAP)分子标记筛选[J].江苏农业学报,2015,(03):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
 LIU Ya-hui,WANG Xiu-ping,LU Xue-lin,et al.Selection of sequence-related amplified polymorphism molecular marker associated with salt tolerance of cotton[J].,2015,(03):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
[2]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
 NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(03):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[3]徐剑文,孔杰,赵君,等.盐胁迫下棉花萌发、成苗和产量相关性状的QTL定位[J].江苏农业学报,2018,(05):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
 XU Jian-wen,KONG-Jie,ZHAO Jun,et al.Identification of QTLs conferring the traits related to germination, seedling survival and production of cotton under salt stress[J].,2018,(03):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
[4]闻甜,陈祥龙,武晓刚,等.过表达番茄LeDnaJ基因提高陆地棉(Gossypium hirsutum Linn.) R15的耐盐性[J].江苏农业学报,2020,(02):271.[doi:doi:10.3969/j.issn.1000-4440.2020.02.003]
 WEN Tian,CHEN Xiang-long,WU Xiao-gang,et al.Investigation on the improvement of salt tolerance in Gossypium hirsutum Linn. R15 through overexpression of tomato LeDnaJ gene[J].,2020,(03):271.[doi:doi:10.3969/j.issn.1000-4440.2020.02.003]
[5]李浩龙,周蓉,蒋芳玲,等.醋栗番茄LA2093渐渗系群体苗期耐盐性评价[J].江苏农业学报,2022,38(06):1620.[doi:doi:10.3969/j.issn.1000-4440.2022.06.021]
 LI Hao-long,ZHOU Rong,JJANG Fang-ling,et al.Evaluation of salt tolerance of introgression line population of Solanum pimpinellifolium LA2093 at seedling stage[J].,2022,38(03):1620.[doi:doi:10.3969/j.issn.1000-4440.2022.06.021]
[6]张斌.大豆转录因子GmMYC2L参与植物耐盐性调控[J].江苏农业学报,2024,(07):1182.[doi:doi:10.3969/j.issn.1000-4440.2024.07.004]
 ZHANG Bin.Soybean transcription factor GmMYC2L is involved in the regulation of plant salt tolerance[J].,2024,(03):1182.[doi:doi:10.3969/j.issn.1000-4440.2024.07.004]

备注/Memo

备注/Memo:
收稿日期:2017-01-12 基金项目:“十二五”国家科技支撑计划重点项目(2015BAD15B04);国家高技术研究发展计划(“863”计划)项目(2015AA020951);国家自然科学基金青年基金项目(21506098);江苏省高校自然科学研究面上项目(15KJB530007) 作者简介:李华山(1990-),男,河南汤阴人,硕士研究生,主要从事耐盐促生菌的筛选及微生物菌剂开发等研究。(E-mail) huashan@njtech.edu.cn 通讯作者:冯小海,(E-mail) fengxiaohai@njtech.edu.cn;许宗奇,(E-mail) zqxu@njtech.edu.cn
更新日期/Last Update: 2017-06-29