[1]王秋君,郭德杰,马艳.不同养分元素对致病性尖孢镰刀菌在土壤团聚体中分布的影响[J].江苏农业学报,2017,(02):301-306.[doi:doi:10.3969/j.issn.1000-4440.2017.02.010]
 WANG Qiu-jun,GUO De-jie,MA Yan.Distribution of pathogenic Fusarium oxysporum in soil aggregates in response to nutrient elements addition[J].,2017,(02):301-306.[doi:doi:10.3969/j.issn.1000-4440.2017.02.010]
点击复制

不同养分元素对致病性尖孢镰刀菌在土壤团聚体中分布的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年02期
页码:
301-306
栏目:
植物保护
出版日期:
2017-04-30

文章信息/Info

Title:
Distribution of pathogenic Fusarium oxysporum in soil aggregates in response to nutrient elements addition
作者:
王秋君12郭德杰12马艳12
(1.江苏省农业科学院农业资源与环境研究所,江苏南京210014;2.农业部江苏耕地保育科学观测实验站,江苏南京210014)
Author(s):
WANG Qiu-jun12GUO De-jie12 MA Yan12
(1.Institute of Agricultural Resources and Environments, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Scientific Observing and Experimental Station of Arable Land Conservation , Ministry of Agriculture, Nanjing 210014, China)
关键词:
致病性尖孢镰刀菌土壤团聚体养分元素
Keywords:
pathogenic Fusarium oxysporumsoil aggregatenutrient element
分类号:
S152.4+81
DOI:
doi:10.3969/j.issn.1000-4440.2017.02.010
文献标志码:
A
摘要:
为了解致病性尖孢镰刀菌在土壤团聚体中分布状况并从土壤养分方面弄清其分布机制,本试验将土壤灭菌后接种致病性尖孢镰刀菌,并分别添加不同养分元素(有机物、氮、钾、钠、钙、镁、铜、锌、铁、锰)培养15 d后,通过干筛法将土壤筛分为4种粒径团聚体(>4.0 mm、2.1~4.0 mm、1.1~2.0 mm、≤1.0 mm),测定土体土及团聚体中尖孢镰刀菌数量。结果表明,添加有机物显著增加了土体土中尖孢镰刀菌数量,而添加氮、钙、镁、铜、锌、铁、锰显著降低了土体土中尖孢镰刀菌数量。添加不同养分元素显著改变了尖孢镰刀菌在不同粒径团聚体中的分布。通过相关性分析发现,土体土中尖孢镰刀菌数量与1.1~4.0 mm粒径团聚体中尖孢镰刀菌数量显著相关。据此推测,不同养分元素主要是通过影响尖孢镰刀菌在1.1~4.0 mm粒径团聚体中定殖状况而最终影响土体土中尖孢镰刀菌的生长。
Abstract:
To make clear the distribution of pathogenic Fusarium oxysporum in soil aggregates, the sterilized soil was inoculated with pathogenic F. oxysporum and applied with different nutrient elements (organic matter, N, K, Na, Ca, Mg, Cu, Zn, Fe, and Mn ). After 15-d incubation, the soil was screened into four sizes of aggregates (>4.0 mm, 2.1-4.0 mm, 1.1-2.0 mm, ≤1.0 mm) and the populations of F. oxysporum in bulk soil and soil aggregates were measured. The results showed that the addition of organic matter significantly increased the number of F. oxysporum in bulk soil which was decreased by the addition of N, Ca, Mg, Cu, Zn, Fe, and Mn. The distribution of F. oxysporum in different sizes of aggregates was significantly changed by nutrient elements. The number of F. oxysporum in bulk soil was significantly correlated with that in the aggregates of 1.1-4.0 mm, indicating that nutrient elements influenced the growth of F. oxysporum in bulk soil by affecting its colonization in 1.1-4.0 mm aggregates.

参考文献/References:

[1]王夏雯,余翔,乔俊卿,等. 西瓜茬后种植稻麦对土壤微生物数量和西瓜枯萎病发生的影响[J].江苏农业学报,2015,31(6):1291-1295.
[2]PALMERO D, RUBIO-MORAGA A, GALVEZ-PAT N L, et al. Pathogenicity and genetic diversity of Fusarium oxysporum isolates from corms of Crocus sativus [J]. Industrial Crops and Products, 2014, 61: 186-192.
[3]韦绍龙,黄素梅,韦莉萍,等. 香蕉抗(耐)枯萎病新品种桂蕉9号的选育及其高产栽培技术[J].南方农业学报,2016,47(4):530-536.
[4]LING N, HUANG Q, GUO S, et al. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum [J]. Plant and Soil, 2011, 341(1/2): 485-493.
[5]周开胜. 厌氧还原土壤灭菌法抑制西瓜专化型尖孢镰刀菌[J]. 江苏农业学报,2015,31(5):1006-1011.
[6]NEL B, STEINBERG C, LABUSCHAGNE N, et al. Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants [J]. Plant Pathology, 2006, 55(2): 207-216.
[7]刘贵友,邹瑶,顾杨霞,等.内生真菌对连作花生土壤尖孢镰刀菌的拮抗作用[J].江苏农业科学,2016,44(12):170-174.
[8]VOGEL C, BABIN D, PRONK G J, et al. Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils [J]. Soil Biology and Biochemistry, 2014, 79: 57-67.
[9]KRAVCHENKO A, CHUN HC, MAZER M, et al. Relationships between intra-aggregate pore structures and distributions of Escherichia coli within soil macro-aggregates [J]. Applied Soil Ecology, 2013, 63: 134-142.
[10]JIANG Y, SUN B, JIN C, et al. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil [J]. Soil Biology and Biochemistry, 2013,60(60):1-9.
[11]SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics [J]. Soil & Tillage Research, 2004, 79: 7-31.
[12]TISDALL J. Possible role of soil microorganisms in aggregation in soils [J]. Plant and Soil, 1994, 159(1): 115-121.
[13]SIX J, ELLIOTT E T ,PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation a mechanism for C sequestration under no-tillage agriculture [J]. Soil Biology & Biochemistry, 2000, 32(14):2099-2103.
[14]OTTEN W, HARRIS K, YOUNG I M, et al. Preferential spread of the pathogenic fungus Rhizoctonia solani through structured soil [J]. Soil Biology and Biochemistry, 2004, 36(2): 203-210.
[15]TOYOTA K, YOUNG I M ,RITZ K. Effects of soil matric potential and bulk density on the growth of Fusarium oxysporum f. sp. raphani [J]. Soil Biology and Biochemistry, 1996, 28(9): 1139-1145.
[16]OTTEN W, GILLIGAN C A, WATTS C, et al. Continuity of air-filled pores and invasion thresholds for a soil-borne fungal plant pathogen, Rhizoctonia solani [J]. Soil Biology and Biochemistry, 1999, 31(13): 1803-1810.
[17]TOYOTA K, RITZ K ,YOUNG I M. Microbiological factors affecting the colonisation of soil aggregates by Fusarium oxysporum f. sp. raphani [J]. Soil Biology and Biochemistry,1996, 28(10): 1513-1521.
[18]DOMINGUEZ J, NEGRN M ,RODRIGUEZ C. Aggregate water-stability, particle-size and soil solution properties in conducive and suppressive soils to Fusarium wilt of banana from Canary Islands (Spain) [J]. Soil Biology and Biochemistry, 2001, 33(4): 449-455.
[19]LIEVENS B, CLAES L, VANACHTER A C, et al. Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis [J]. FEMS Microbiology Letters, 2006, 255(1): 129-139.
[20]CHIVENGE P, VANLAUWE B, GENTILE R, et al. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation [J]. Soil Biology & Biochemistry,2011,43(3):657-666.
[21]SODHI G P S, BERI V ,BENBI D K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in riceCwheat system [J]. Soil & Tillage Research, 2009, 103: 412-418.
[22]张茂星,陈鹏,张明超,等.硝/铵营养对香蕉枯萎病尖孢镰刀菌生长的影响[J]. 植物营养与肥料学报,2013,19(1):232-238.
[23]刘付燕,王兴祥,李蕾,等. 矿质元素对西瓜枯萎病病原菌尖孢镰刀菌产孢的影响[J]. 江苏农业科学, 2012,40(10):97-100.
[24]REGELINK I C, STOOF C R, ROUSSEVA S, et al. Linkages between aggregate formation, porosity and soil chemical properties [J]. Geoderma, 2015(247/248): 24-37.

相似文献/References:

[1]朱建彬,郭相平,谢毅,等.秸秆隔层还田及水氮管理对设施土壤团聚体及固碳特征的影响[J].江苏农业学报,2021,(03):632.[doi:doi:10.3969/j.issn.1000-4440.2021.03.011]
 ZHU Jian-bin,GUO Xiang-ping,XIE Yi,et al.Effects of returning straw interlayer to the field, water and nitrogen management on aggregates and carbon sequestration of facility soil[J].,2021,(02):632.[doi:doi:10.3969/j.issn.1000-4440.2021.03.011]
[2]郑昕雨,陈鹏,韩金吉,等.冻融循环对土壤团聚体与微生物特性影响研究进展[J].江苏农业学报,2023,(04):1080.[doi:doi:10.3969/j.issn.1000-4440.2023.04.018]
 ZHENG Xin-yu,CHEN Peng,HAN Jin-ji,et al.Effects of freeze-thaw cycles on soil aggregates and microbial properties: a review[J].,2023,(02):1080.[doi:doi:10.3969/j.issn.1000-4440.2023.04.018]

备注/Memo

备注/Memo:
收稿日期:2016-11-24 基金项目:国家自然科学基金项目(41301268) 作者简介:王秋君(1983-),男,山西运城人,博士,副研究员,主要从事土壤连作障碍修复研究。(E-mail)wangqiujun461@163.com 通讯作者:马艳,(E-mail)myjaas@sina.com
更新日期/Last Update: 2017-05-02