参考文献/References:
[1]WANG S, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality [J]. Nature Genetics, 2015, 47(8):949-954.
[2]蔡永盛,郑桂萍,奚浩然,等. 高垩白与低垩白水稻穗部性状及产量的比较[J]. 江苏农业科学,2014,42(12):79-82.
[3]XING Y, ZHANG Q. Genetic and molecular bases of rice yield [J]. The Annual Review of Plant Biology, 2010, 61:421-442.
[4]陈静. 江苏省水稻食味改良育种研究进展[J]. 江苏农业科学,2015,43(12):77-80.
[5]HUANG R, JIANG L, ZHENG J, et al. Genetic bases of rice grain shape: so many genes, so little known [J]. Trends in Plant Science, 2013, 18(4):218-226.
[6]丁丹,张亚东,郑佳,等. 水稻粒长基因GS3和qGL3功能标记的设计及应用[J]. 江苏农业学报, 2014, 30(6):1191-1197.
[7]WANG S, WU K, YUAN Q, et al. Control of grain size, shape and quality by OsSPL16 in rice [J]. Nature Genetics, 2012, 44(8):950-954.
[8]FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J]. Theoretical and Applied Genetics, 2006, 112(6):1164-1171.
[9]ZHOU Y, ZHU J, LI Z, et al. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication [J]. Genetics, 2009, 183(1):315-324.
[10]ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52):21534-21539.
[11]QI P, LIN Y S, SONG X J, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3 [J]. Cell Research, 2012, 22(12):1666-1680.
[12]ZHOU Y, MIAO J, GU H, et al. Natural variations in SLG7 regulate grain shape in rice [J]. Genetics, 2015, 201(4):1591-1599.
[13]ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield [J]. Nature Genetics, 2013, 45(6):707-711.
[14]SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J]. Nature Genetics, 2007, 39(5):623-630.
[15]SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication [J]. Nature Genetics, 2008, 40(8):1023-1028.
[16]WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight [J]. Cell Res, 2008, 18(12):1199-1209.
[17]LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice [J]. Nature Genetics, 2011, 43(12):1266-1269.
[18]SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice [J]. Journal of Integrative Plant Biology, 2013, 55(10):938-949.
[19]王军,杨杰,徐祥,等. 水稻千粒重基因TGW6功能标记的开发与利用[J]. 中国水稻科学, 2014, 28(5):473-478.
[20]ZHANG H, ZHANG D, WANG M, et al. A core collection and mini core collection of Oryza sativa L. in China [J]. Theoretical and Applied Genetics, 2011, 122(1):49-61.
[21]韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准[M].北京:中国农业出版社, 2006:18-19.
[22]TAPIA-TUSSELL R, QUIJANO-RAMAYO A, ROJAS-HERRERA R, et al. A fast, simple, and reliable high-yielding method for DNA extraction from different plant species [J]. Molecular Biotechnology, 2005, 31(2):137-139.
[23]JIANG L, LIU L. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China [J]. Antiquity, 2006, 80:355-361.
[24]WANG M, YU Y, HABERER G, et al. The genome sequence of African rice(Oryza glaberrima) and evidence for independent domestication [J]. Nature Genetics, 2014, 46(9):982-988.
[25]DUAN S, LU B, LI Z, et al. Phylogenetic analysis of AA-genome Oryza species (Poaceae) based on chloroplast, mitochondrial, and nuclear DNA sequences [J]. Biochemical Genetics, 2007, 45(1/2):113-129.
[26]ZHU T, XU P Z, LIU J P, et al. Phylogenetic relationships and genome divergence among the AA- genome species of the genus Oryza as revealed by 53 nuclear genes and 16 intergenic regions [J]. Molecular Phylogenetics and Evolution, 2014, 70:348-361.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(06):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(06):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(06):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(06):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(06):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[9]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[10]董海霞,赵明柳,唐守寅,等.石灰对土壤中Cd 和Zn 形态及对水稻有效性的影响[J].江苏农业学报,2016,(06):1320.[doi:doi:10.3969/j.issn.1000-4440.2016.06.020]
DONG Hai-xia,ZHAO Ming-liu,TANG Shou-yin,et al.The effects of liming on the fraction and bioavailability to rice of Cd and Zn in a contaminated soil[J].,2016,(06):1320.[doi:doi:10.3969/j.issn.1000-4440.2016.06.020]
[11]方先文,张云辉,肖西林,等.基于重组自交系群体的水稻粒形QTL定位[J].江苏农业学报,2017,(02):241.[doi:doi:10.3969/j.issn.1000-4440.2017.02.001]
FANG Xian-wen,ZHANG Yun-hui,XIAO Xi-lin,et al.Mapping of QTLs for grain shape using recombinant inbred lines in rice (Oryza sativa L.)[J].,2017,(06):241.[doi:doi:10.3969/j.issn.1000-4440.2017.02.001]