[1]杨冬静,高方园,陈晶伟,等.长喙壳菌侵染甘薯的转录组分析[J].江苏农业学报,2025,(07):1320-1331.[doi:doi:10.3969/j.issn.1000-4440.2025.07.008]
 YANG Dongjing,GAO Fangyuan,CHEN Jingwei,et al.Transcriptomic analysis of sweet potato infected by Ceratocystis fimbriata[J].,2025,(07):1320-1331.[doi:doi:10.3969/j.issn.1000-4440.2025.07.008]
点击复制

长喙壳菌侵染甘薯的转录组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1320-1331
栏目:
植物保护
出版日期:
2025-07-31

文章信息/Info

Title:
Transcriptomic analysis of sweet potato infected by Ceratocystis fimbriata
作者:
杨冬静高方园陈晶伟马居奎唐伟梁昭张成玲孙厚俊谢逸萍
(江苏徐淮地区徐州农业科学研究所/农业农村部甘薯生物学与遗传育种重点实验室,江苏徐州221131)
Author(s):
YANG DongjingGAO FangyuanCHEN JingweiMA JukuiTANG WeiLIANG ZhaoZHANG ChenglingSUN HoujunXIE Yiping
(Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China)
关键词:
甘薯长喙壳菌转录组测序差异表达基因致病机理
Keywords:
sweet potatoCeratocystis fimbriatatranscriptome sequencingdifferentially expressed genes (DEGs)pathogenic mechanism
分类号:
S435.311
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.008
文献标志码:
A
摘要:
甘薯黑斑病是由长喙壳菌(Ceratocystis fimbriata Ellis et Halsted)侵染引起的,该病害是甘薯重要病害之一,在田间生产和贮藏期均可发生,严重影响甘薯的产量和品质。为了明确长喙壳菌对甘薯黑斑病的致病机理,本研究以甘薯黑斑病抗病品种南京92和感病品种徐薯18为试验材料,采用针刺接种孢子悬浮液的方法人工接种甘薯长喙壳菌,分别于接种当天与接种后第1 d、第3 d、第7 d取样,利用转录组测序技术进行测序分析。转录组测序结果显示,与接种当天相比,长喙壳菌接种至南京92薯块后第1 d、第3 d和第7 d上调差异表达基因(DEGs)分别为1 124个、1 713个和2 032个,下调DEGs分别为869个、1 042个和1 005个;长喙壳菌接种至徐薯18薯块后第1 d、第3 d和第7 d上调DEGs分别为901个、1 625个和1 957个,下调DEGs分别为1 017个、976个和1 032个。GO功能富集分析结果表明,差异表达基因主要富集于生物过程类别的生物进程、代谢进程、单一生物进程以及细胞组分类别的细胞、细胞部分、细胞器等。KEGG 通路富集的主要通路为代谢途径。维恩图分析结果表明,长喙壳菌接种至南京92薯块后不同时间点共有DEGs为1 545个,接种至徐薯18薯块后不同时间点共有DEGs为1 116个,对这些DEGs进行交互分析,发现接种至2个甘薯品种薯块后在各时间点共有的DEGs有925个。对925个共有DEGs进行KEGG聚类分析,结果表明,这些DEGs主要被富集到代谢通路中,如碳水化合物代谢、脂质代谢、氨基酸代谢、核苷酸代谢、辅因子和维生素代谢以及能量代谢等途径中,进一步对这些DEGs进行筛选,得到相对表达量高于1.00、持续上调表达并且差异表达倍数达到40倍以上的关键致病基因共20个。本研究结果为深入研究长喙壳菌致病分子机理奠定了重要基础。
Abstract:
Sweet potato black rot is caused by the infection of Ceratocystis fimbriata Ellis et Halsted. As one of the important diseases of sweet potato, it can occur during field production and storage, seriously affecting the yield and quality of sweet potato. To clarify the pathogenic mechanism of Ceratocystis fimbriata on sweet potato, this study used Nanjing 92 (a resistant variety to sweet potato black rot) and Xushu 18 (a susceptible variety) as test materials. The method of needle prick inoculation with spore suspension was adopted to artificially inoculate Ceratocystis fimbriata on sweet potato. Samples were collected at 0 d, 1 d, 3 d and 7 d after inoculation, and transcriptome sequencing technology was used for sequencing analysis.The results of transcriptome sequencing showed that compared with the day of inoculation, the numbers of up-regulated differentially expressed genes (DEGs) at 1 d, 3 d and 7 d after inoculation of Ceratocystis fimbriata on Nanjing 92 tubers were 1 124, 1 713 and 2 032, respectively, and the numbers of down-regulated DEGs were 869, 1 042 and 1 005, respectively. For Xushu 18 tubers, the numbers of up-regulated DEGs at 1 d, 3 d and 7 d after inoculation were 901, 1 625 and 1 957 respectively, and the numbers of down-regulated DEGs were 1 017, 976 and 1 032 respectively. The results of GO functional enrichment analysis revealed that the differentially expressed genes were predominantly enriched in biological process categories such as biological process, metabolic process and single-organism process, as well as in cellular component categories including cell, cell part and organelle. The main pathways enriched by KEGG pathway were metabolic pathways.Venn diagram analysis showed that the common DEGs at different time points after inoculation of Ceratocystis fimbriata on Nanjing 92 tubers were 1 545, and those on Xushu 18 tubers were 1 116. Through interactive analysis of these DEGs, it was found that there were 925 common DEGs in the two sweet potato varieties at each time period. KEGG cluster analysis of the 925 common DEGs showed that these DEGs were mainly enriched in metabolic pathways, such as carbohydrate metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism, cofactor and vitamin metabolism, and energy metabolism. Further screening of these DEGs identified 20 key pathogenic genes with relative expression levels higher than 1.00, continuous up-regulation and a fold change of more than 40 times. The results of this study lay an important foundation for the in-depth study of the molecular pathogenic mechanism of Ceratocystis fimbriata.

参考文献/References:

[1]XING K, LI T J, LIU Y F, et al. Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato[J]. Food Chemistry,2018,268:188-195.
[2]LIU M Y, GONG Y, SUN H J, et al. Characterization of a novel chitinase from sweet potato and its fungicidal effect against Ceratocystis fimbriata[J]. Journal of Agricultural and Food Chemistry,2020,68(29):7591-7600.
[3]ZHANG M, LIU M, PAN S Y, et al. Perillaldehyde controls postharvest black rot caused by ceratocystis fimbriata in sweet potatoes [J]. Front Microbiol,2018,9:1102.
[4]DOS SANTOS A F, FERREIRA M A, AUER C G, et al. First report of yerba mate wilt caused by Ceratocystis fimbriata in Brazil[J]. Plant Disease,2018,102(11):2381.
[5]贾赵东,谢一芝,尹晴红,等. 甘薯抗黑斑病种质资源的研究及育种利用[J]. 植物遗传资源学报,2010,11(4):424-427,432.
[6]张德胜,乔奇,白瑞英,等. 甘薯长喙壳菌对咯菌腈的敏感基线及咯菌腈对甘薯黑斑病的防治效果[J]. 农药学学报,2022,24(6):1402-1408.
[7]ARISHA M H, ABOELNASR H, AHMAD M Q, et al. Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress[J]. BMC Genomics,2020,21(1):197.
[8]LAU K H, DEL ROSARIO HERRERA M, CRISOVAN E, et al. Transcriptomic analysis of sweet potato under dehydration stress identifies candidate genes for drought tolerance[J]. Plant Direct,2018,2(10):00092.
[9]JI C Y, CHUNG W H, KIM H S, et al. Transcriptome profiling of sweetpotato tuberous roots during low temperature storage[J]. Plant Physiology and Biochemistry,2017,112:97-108.
[10]ONOFUA D. 甘薯响应蔓割病菌侵染的转录组分析及抗病相关基因挖掘[D]. 福州:福建农林大学,2017.
[11]罗勤川. 腐皮镰刀菌侵染甘薯转录组分析及其柠檬酸合酶基因功能初探[D]. 北京:中国农业科学院,2023.
[12]梅玉琴. 甘薯根腐病抗性资源筛选及抗、感品种转录组与代谢组分析[D]. 海口:海南大学,2023.
[13]BEDNAREK R, DAVID M, FUENTES S, et al. Transcriptome analysis provides insights into the responses of sweet potato to sweet potato virus disease (SPVD)[J]. Virus Research,2021,295:198293.
[14]杨冬静,马居奎,唐伟,等. 甘薯块根响应长喙壳菌(Ceratocystis fimbriata)侵染的转录组测序分析[J]. 江西农业学报,2022,34(7):60-69.
[15]CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):884-890.
[16]LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods,2012,9(4):357-359.
[17]KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[18]PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology,2015,33(3):290-295.
[19]LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15(12):550.
[20]ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR:a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics,2010,26(1):139-140.
[21]KIKOT G E, HOURS R A, ALCONADA T M. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum:a review[J]. Journal of Basic Microbiology,2009,49(3):231-241.
[22]LIN Y X, HE H, WEN Y L, et al. Comprehensive analysis of the pectate lyase gene family and the role of FaPL1 in strawberry softening[J]. International Journal of Molecular Sciences,2023,24(17):13217.
[23]MARN-RODRGUEZ M C, SMITH D L, MANNING K, et al. Pectate lyase gene expression and enzyme activity in ripening banana fruit[J]. Plant Molecular Biology,2003,51(6):851-857.
[24]许春景,孙迎超,吴玉星,等. 苹果树腐烂病菌果胶裂解酶基因Vmpl4的致病功能研究[J]. 果树学报,2017,34(1):19-25.
[25]王嘉欣. 多聚半乳糖醛酸酶和果胶裂解酶在胶孢炭疽菌致病中的作用及DNA甲基化调控机制研究[D]. 海口:海南大学,2021.
[26]姜明,谭明琪,王丹,等. 大丽轮枝菌果胶裂解酶PL1家族基因VdPL1-4的致病功能研究[J]. 植物保护,2023,49(3):19-31.
[27]闫淼,王豪杰,熊韬,等. 甜瓜枯萎病菌果胶裂解酶基因的功能分析[J]. 植物生理学报,2024,60(6):928-936.
[28]洪坤奇,赵莹,尹新明,等.苹果轮纹病菌(Botryosphaeria dothidea)果胶裂解酶基因Bdpl1的致病功能分析[J]. 植物病理学报,2019,49(3):314-325.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(07):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(07):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(07):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(07):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(07):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(07):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
 MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(07):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(07):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
 YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(07):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[10]李春华,汪吉东,张辉,等.磷缺乏对不同甘薯品种根系生长及磷素吸收的影响[J].江苏农业学报,2019,(01):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]
 LI Chun-hua,WANG Ji-dong,ZHANG Hui,et al.Responses of root growth and phosphorus uptake for sweet potatoes under low phosphorus supply[J].,2019,(07):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]

备注/Memo

备注/Memo:
收稿日期:2024-10-11基金项目:国家现代农业产业技术体系资助项目(CARS-10);国家自然科学基金青年基金项目(32001599)作者简介:杨冬静(1983-),女,四川射洪人,博士,副研究员,主要从事植物病理学研究。(E-mail)njnd831215@126.com通讯作者:谢逸萍,(E-mail)xieyiping6216@163.com
更新日期/Last Update: 2025-08-19