参考文献/References:
[1]汪平. 剑麻受烟草疫霉侵染后转录组测序分析[D]. 海口:海南大学,2014.
[2]李逸文,王林焰,陈豪琦,等. 2015-2023年1406份大豆品种(系)对大豆疫霉的抗性评价[J/OL]. 南京农业大学学报,2024:1-8
[2024-02-29]. https://link.cnki.net/urlid/32.1148.S.20240110.1734.002.html.
[3]田峰奇,王路遥,董莎萌. 马铃薯与致病疫霉互作研究进展与展望[J]. 植物保护,2023,49(5):89-110,126.
[4]GRNWALD N J, GOSS E M, PRESS C M. Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals[J]. Molecular Plant Pathology,2008,9(6):729-740.
[5]刘艳艳,丁颖,刘兴华,等. 辣椒CaSYT1的鉴定及其在疫霉侵染过程中的功能初探[J]. 园艺学报,2024,51(3):533-544.
[6]杜天宇. 烟草抗黑胫病转录与调控机制研究[D]. 杭州:浙江大学,2022.
[7]张纯,唐承晨,王吉永,等. 转录组学在植物应答逆境胁迫中的研究进展[J]. 生物学杂志,2017,34(2):86-90.
[8]张燕梅,赵艳龙,李俊峰,等. 剑麻与烟草疫霉互作过程中的转录组研究[J]. 热带作物学报,2018,39(3):540-546.
[9]竹龙鸣. 大豆对大豆疫霉菌侵染响应的转录组学和代谢组学研究[D]. 南京:南京农业大学,2018.
[10]卢珍红,原晓龙,李绅崇,等. 非洲菊对隐地疫霉侵染响应WRKY转录因子的鉴定及表达分析[J/OL]. 分子植物育种,2024:1-10
[2023-10-25]. http://kns-cnki-net.webvpn.hnagri.org.cn/kcms/detail/46.1068.S.20231025.1320.008.html.
[11]MENG H, SUN M M, JIANG Z P, et al. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae[J]. Scientific Reports,2021,11(1):809.
[12]LI H Y, WANG H N, JING M F, et al. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility[J]. eLife,2018,7:1-23.
[13]张豫丹,马晓寒,李俊领,等. 绿原酸对烟草疫霉的抑制作用及对烟草黑胫病的防治效果研究[J]. 作物杂志,2022(2):230-236.
[14]CENN M C, KO K, CHANG W L, et al.Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis[J]. The Plant Journal,2015,83(5):926-939.
[15]GOMEZ L D, VANACKER H, BUCHNER P, et al. Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling[J]. Plant Physiology,2004,134(4):1662-1671.
[16]SWARNALOK D, GABRIELA C C, WAHLSTEN M, et al. Disruption of the methionine cycle and reduced cellular gluthathione levels underlie potex-potyvirus synergism in Nicotiana benthamiana[J]. Molecular Plant Pathology,2018,19(8):1820-1835.
[17]MUKAIHARA T, HATANAKA T, NAKANO M, et al. Ralstonia solanacearum type Ⅲ effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity[J]. Microbiology,2016,7(2):1-14.
[18]ZECHMANN B. Subcellular roles of glutathione in mediating plant defense during biotic stress[J]. Plants,2020,9(9):1067.
[19]ZHU F, ZHANG Q P, CHE Y P, et al. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species[J]. Molecular Plant Pathology,2021,22(12):1668-1687.
[20]王斌,杨盼迪,王玉昆,等. 采后黄瓜在冷驯化处理过程中的转录组变化[J]. 西北农业学报,2024,33(2):256-270.
[21]刘 潮,韩利红,褚洪龙,等. 植物与病原菌互作的分子机制研究进展[J]. 生物学通报,2018,45(10):2271-2279.
[22]DODDS P N,RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11(8):539-548.
[23]曲硕,焦耀磊,付加禹,等. 抗病基因PR1在大豆中的遗传转化与多抗材料的培育[J]. 分子植物育种,2023,21(1):174-184.
[24]刘婉迪. 中国野生毛葡萄芪合酶基因家族新成员抗白粉病机制研究[D]. 杨凌:西北农林科技大学,2023.
[25]FREY N F, GARCIA A V, BIGEARD J, et al. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences[J]. Genome Biology,2014,15(6):87.
[26]FELIX G, DURAN J D, VOLKO S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. The Plant Jounal,1999,18(3):265-276.
[27]ASAI T, TENA G, PLOTNIKOVA J, et al. MAP kinanse signaling cascade in Arabidopsis innate immunity[J]. Nature,2002,415(6875):977-983.
[28]王淑叶,伍国强,魏明. WRKY转录因子调控植物逆境胁迫响应的作用机制[J]. 生物工程学报,2024,40(1):35-52.
[29]李爽,熊樱,RALF M X,等. 转录因子WRKY6和PR1在拟南芥胁迫记忆中的表达模式[J]. 植物研究,2019,39(5):752-759.
[30]黄幸,丁峰,彭宏祥,等. 植物WRKY转录因子家族研究进展[J]. 生物技术通报,2019,35(12):129-143.
[31]向小华,吴新儒,晁江涛,等. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传,2016,38(9):840-862.
[32]却枫,刘庆楠,查若飞,等. 孝顺竹中笋箨衰老相关WRKY转录因子的鉴定与分析[J]. 南京林业大学学报(自然科学版),2023,47(6):113-123.
[33]朱飞雪,程玉江,郭丽. 蝴蝶兰WRKY57基因的克隆、亚细胞定位及响应脱落酸功能分析[J]. 江苏农业科学,2023,51(18):54-62.
[34]陈娜,邵勤,李晓鹏. 番茄WRKY转录因子功能的研究进展[J]. 江苏农业科学,2023,51(13):6-17.
[35]ZHENG Z Y, MOSHER S L, FAN B F, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology,2007,7:2.
[36]KIM K C, LAI Z B,FAN B F, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. The Plant Cell,2008,20(9):2357-2371.
[37]JOURNOT-CATALINO N, SOMSSICH I E, ROBY D, et al. The transcription factors WRKY11 and WRKY17 act as negative ragulators of Basal resistance in Arabidopsis thaliana[J]. The Plant Cell,2006,18(11):3289-3302.
[38]KIM K C, FAN B F, CHEN Z X, et al. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae[J]. Plant Physiology,2006,142(3):1180-1192.
[39]LIU F, LI X X, WANG M R,et al. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J]. Plant Biotechnology Journal,2018,16(4):911-925.
[40]沙仁和,兰黎明,王三红,等. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学,2021,54(24):5220-5229.
[41]SHAN D Q,WANG C Y, ZHENG X D, et al. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple[J]. Plant Physiology,2021,186(2):1202-1219.
[42]杨敏,李庆萌,周陈平,等,番木瓜WRKY转录因子CpWRKY11的克隆和表达[J]. 西北农林科技大学学报,2023,51(5):119-130,138.
[43]HIGASHI K, ISHIGA Y, INAGAKI Y, et al. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana[J]. Molecular Genetics Genomics,2008,279(3):303-312.
[44]董悦,王远达,王志敏,等. WRKY12调控植物发育的分子机制[J]. 生物工程学报,2021,37(1):142-148.
相似文献/References:
[1]吴阳升,林嘉鹏,汪立芹,等.绵羊小卵泡与中卵泡转录组差异特征分析[J].江苏农业学报,2016,(04):832.[doi:10.3969/j.issn.100-4440.2016.04.019]
WU Yang-sheng,LIN Jia-peng,WANG Li-qin,et al.Transcriptome profiling of ovine follicles during growth from small to middle antral sizes[J].,2016,(03):832.[doi:10.3969/j.issn.100-4440.2016.04.019]
[2]高弢,史建荣.基于高通量测序技术分析麝香草酚处理禾谷镰孢菌后转录组学的变化[J].江苏农业学报,2017,(06):1257.[doi:doi:10.3969/j.issn.1000-4440.2017.06.009]
GAO Tao,SHI Jian-rong.Transcriptome analysis of Fusarium graminearum treated with thymol based on high-throughput sequencing technology[J].,2017,(03):1257.[doi:doi:10.3969/j.issn.1000-4440.2017.06.009]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(03):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]王莹,李玉娟,李敏,等.紫叶紫薇新品系叶色变化转录组分析[J].江苏农业学报,2018,(05):1128.[doi:doi:10.3969/j.issn.1000-4440.2018.05.023]
WANG Ying,LI Yu-juan,LI Min,et al.Transcriptome analysis of a new strain of purple-leaf crape myrtle (Lagerstroemia indica) during leaves color changes[J].,2018,(03):1128.[doi:doi:10.3969/j.issn.1000-4440.2018.05.023]
[5]贺丹,吴芳芳,张佼蕊,等.牡丹转录组SSR信息分析及其分子标记开发[J].江苏农业学报,2019,(06):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
HE Dan,WU Fang-fang,ZHANG Jiao-rui,et al.Analysis of SSR information in transcriptome and development of molecular markers in Paeonia suffruticosa[J].,2019,(03):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
[6]王江英,朱朋波,汤雪燕,等.外源赤霉素诱导矮生山茶恨天高植株生长的转录组分析[J].江苏农业学报,2020,(01):47.[doi:doi:10.3969/j.issn.1000-4440.2020.01.007]
WANG Jiang-ying,ZHU Peng-bo,TANG Xue-yan,et al.Transcriptome profiling of plant height growth in Camellia reticulata Hentiangao induced by exogenous gibberellin[J].,2020,(03):47.[doi:doi:10.3969/j.issn.1000-4440.2020.01.007]
[7]梁文化,孙旭超,岳红亮,等.水稻超大籽粒形成的重要基因和调控通路的转录组分析[J].江苏农业学报,2020,(04):801.[doi:doi:10.3969/j.issn.1000-4440.2020.04.001]
LIANG Wen-hua,SUN Xu-chao,YUE Hong-liang,et al.Transcriptome analysis on critical genes and key pathways in extra-large grain development of rice[J].,2020,(03):801.[doi:doi:10.3969/j.issn.1000-4440.2020.04.001]
[8]马杰,屈雯,陈春艳,等.基于转录组序列的羊肚菌EST-SSR标记开发与遗传多样性分析[J].江苏农业学报,2020,(05):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
MA Jie,QU Wen,CHEN Chun-yan,et al.Development of EST-SSR markers based on transcriptome sequencing of Morchella spp. and its genetic diversity analysis[J].,2020,(03):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
[9]姚启伦,霍仕平,张俊军.玉米自交系响应高温、干旱胁迫的关键基因及通路[J].江苏农业学报,2021,(01):29.[doi:doi:10.3969/j.issn.1000-4440.2021.01.004]
YAO Qi-lun,HUO Shi-ping,ZHANG Jun-jun.Key genes and pathways of maize inbred lines responding to heat and drought stress[J].,2021,(03):29.[doi:doi:10.3969/j.issn.1000-4440.2021.01.004]
[10]张斌,杨昕霞,袁志辉.水稻响应热胁迫核心基因的筛选与鉴定[J].江苏农业学报,2021,(04):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]
ZHANG Bin,YANG Xin-xia,YUAN Zhi-hui.Screening and identification of core genes responding to heat stress in rice[J].,2021,(03):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]