参考文献/References:
[1]李君明,项朝阳,王孝宣,等. “十三五”我国番茄产业现状及展望[J]. 中国蔬菜,2021(2):13-20.
[2]SAINJU U M, DRIS R, SINGH B. Mineral nutrition of tomato[J]. Journal of Food Agriculture & Environment,2003,1(2):176-183.
[3]STITT M. Nitrate regulation of metabolism and growth[J]. Current Opinion in Plant Biology,1999,2(3):178-186.
[4]MA J F, TSAY Y F. Transport systems of mineral elements in plants:transporters,regulation and utilization[J]. Plant and Cell Physiology,2021,62(4):539-540.
[5]CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology,2016,67:489-512.
[6]ROBINSON N J, PROCTER C M, CONNOLLY E L, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature,1999,397(6721):694-697.
[7]刘思恬,祝秀梅,张婧,等. 不同类型番茄果实营养品质分析与综合评价[J]. 江西农业大学学报,2023,45(3):564-574.
[8]赵方杰,谢婉滢,汪鹏. 土壤与人体健康[J]. 土壤学报,2020,57(1):1-11.
[9]ZHAO F J, MCGRATH S P. Biofortification and phytoremediation[J]. Current Opinion in Plant Biology,2009,12(3):373-380.
[10]汪鹏,王静,陈宏坪,等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报,2018,37(7):1409-1417.
[11]ABENAVOLI M R, LONGO C, LUPINI A, et al. Phenotyping two tomato genotypes with different nitrogen use efficiency[J]. Plant Physiology and Biochemistry,2016,107:21-32.
[12]GLASS A D M. Nitrate uptake by plant roots[J]. Botany,2009,87(7):659-667.
[13]ONO F, FROMMER W B, VON WIRN N. Coordinated diurnal regulation of low-and high-affinity nitrate transporters in tomato[J]. Plant Biology,2000,2(1):17-23.
[14]ALBORNOZ F, GEBAUER M, PONCE C, et al. LeNRT1.1 improves nitrate uptake in grafted tomato plants under high nitrogen demand[J]. International Journal of Molecular Sciences,2018,19(12):3921.
[15]ABOUELSAAD I, WEIHRAUCH D, RENAULT S. Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative[J]. Scientia Horticulturae,2016,211:70-78.
[16]FU Y L, YI H Y, BAO J, et al. LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato[J]. Febs Letters,2015,589(10):1072-1079.
[17]ZHENG Y J, YANG Z Q, LUO J, et al. Transcriptome analysis of sugar and acid metabolism in young tomato fruits under high temperature and nitrogen fertilizer influence[J]. Frontiers in Plant Science,2023,14:1197553.
[18]VON WIRN N, LAUTER F R, NINNEMANN O, et al. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato[J]. Plant Journal,2000,21(2):167-175.
[19]FILIZ E, AKBUDAK M A. Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L.):bioinformatics, physiological and expression analyses under drought and salt stresses[J]. Genomics,2020,112(5):3773-3782.
[20]DOMNGUEZ-FIGUEROA J, CARRILLO L, RENAU-MORATA B, et al. The Arabidopsis transcription factor CDF3 is involved in nitrogen responses and improves nitrogen use efficiency in tomato[J]. Frontiers in Plant Science,2020,11:601558.
[21]ZHAO P F, YOU Q Y, LEI M G. A CRISPR/Cas9 deletion into the phosphate transporter SlPHO1;1 reveals its role in phosphate nutrition of tomato seedlings[J]. Physiologia Plantarum,2019,167(4):556-563.
[22]CHEN A, CHEN X, WANG H, et al. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato[J]. BMC Plant Biology,2014,14:61.
[23]MUCHHAL U S, RAGHOTHAMA K G. Transcriptional regulation of plant phosphate transporters[J]. Proceedings of the National Academy of Sciences,1999,96(10):5868-5872.
[24]BUCHER M, RAUSCH C, DARAM P. Molecular and biochemical mechanisms of phosphorus uptake into plants[J]. Journal of Plant Nutrition and Soil Science,2001,164(2):209-217.
[25]NAGY R, DRISSNER D, AMRHEIN N, et al. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated[J]. New Phytologist,2009,181(4):950-959.
[26]XU G H, CHAGUE V, MELAMED-BESSUDO C, et al. Functional characterization of LePT4:a phosphate transporter in tomato with mycorrhiza-enhanced expression[J]. Journal of Experimental Botany,2007,58(10):2491-2501.
[27]YU G H, HUANG S C, HE R, et al. Transgenic rice overexperessing a tomato mitochondrial phosphate transporter,SlMPT3;1,promotes phosphate uptake and increases grain yield[J]. Journal of Plant Biology,2018,61(6):383-400.
[28]NIEVES-CORDONES M, ALEMN F, MARTNEZ V, et al. K+ uptake in plant roots. the systems involved,their regulation and parallels in other organisms[J]. Journal of Plant Physiology,2014,171(9):688-695.
[29]ALEMN F, NIEVES-CORDONES M, MARTNEZ V, et al. Root K+ acquisition in plants:the Arabidopsis thaliana model[J]. Plant and Cell Physiology,2011,52(9):1603-1612.
[30]NIEVES-CORDONES M, ALEMN F, MARTNEZ V, et al. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions[J]. Molecular Plant,2010,3(2):326-333.
[31]AMTMANN A, ARMENGAUD P. Effects of N,P,K and S on metabolism:new knowledge gained from multi-level analysis[J]. Current Opinion in Plant Biology,2009,12(3):275-283.
[32]TANG R J, ZHAO F G, YANG Y, et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nature Plants,2020,6:384-393.
[33]MARTNEZ-MARTNEZ A, AMO J, JIMNEZ-ESTVEZ E, et al. SlCIPK9 regulates pollen tube elongation in tomato plants via a K+-independent mechanism[J]. Plant Physiology and Biochemistry,2024,215:109039.
[34]HARTJE S, ZIMMERMANN S, KLONUS D, et al. Functional characterisation of LKT1,a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes[J]. Planta,2000,210(5):723-731.
[35]AMO J, LARA A, MARTNEZ-MARTNEZ A, et al. The protein kinase SlCIPK23 boosts K+ and Na+ uptake in tomato plants[J]. Plant Cell and Environment,2021,44(12):3589-3605.
[36]XU J, LI H D, CHEN L Q, et al. A protein kinase,interacting with two calcineurin B-like proteins, regulates K transporter AKT1 in Arabidopsis[J]. Cell,2006,125(7):1347-1360.
[37]NIEVES-CORDONES M, LARA A, SILVA M, et al. Root high-affinity K+ and Cs+ uptake and plant fertility in tomato plants are dependent on the activity of the high-affinity K+ transporter SlHAK5[J]. Plant Cell and Environment,2020,43(7):1707-1721.
[38]RDENAS R, GARCA-LEGAZ M F, LPEZ-GMEZ E, et al. NO3-, PO3-4 and SO2-4 deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato and Arabidopsis plants[J]. Physiologia Plantarum,2017,160(4):410-424.
[39]HONG Y C, GUAN X J, WANG X, et al. Natural variation in SlSOS2 promoter hinders salt resistance during tomato domestication[J]. Horticulture Research,2023,10(1):232-239.
[40]WANG Z, HONG Y C, ZHU G T, et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter[J]. Embo Journal,2020,39(10):e103256.
[41]WANG Z, HONG Y, LI Y, et al. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication[J]. Plant Biotechnology Journal,2021,19(1):20-22.
[42]LEIDI E O, BARRAGN V, RUBIO L, et al. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J]. Plant Journal,2010,61(3):495-506.
[43]MORI S. Iron acquisition by plants[J]. Current Opinion in Plant Biology,1999,2(3):250-253.
[44]YI Y, GUERINOT M L. Genetic evidence that induction of root Fe(Ⅲ) chelate reductase activity is necessary for iron uptake under iron deficiency[J]. Plant Journal,1996,10(5):835-844.
[45]EIDE D, BRODERIUS M, FETT J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(11):5624-5628.
[46]WU H, LI L, DU J, et al. Molecular and biochemical characterization of the Fe(Ⅲ) chelate reductase gene family in Arabidopsis thaliana[J]. Plant and Cell Physiology,2005,46:1505-1514.
[47]WANG N, CUI Y, LIU Y, et al. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana[J]. Molecular Plant,2013,6(2):503-513.
[48]YUAN Y X, ZHANG J, WANG D W, et al. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants[J]. Cell Research,2005,15(8):613-621.
[49]YUAN Y X, WU H L, WANG N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis[J]. Cell Research,2008,18(3):385-397.
[50]LI L H, CHENG X D, LING H Q. Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology,2004,54(1):125-136.
[51]GAMA F, SAAVEDRA T, DANDLEN S, et al. Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants[J]. Journal of Plant Nutrition and Soil Science,2023,186(5):554-567.
[52]HE X X, JIN C W, LI G X, et al. Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants::silencing of the tomato ferric chelate reductase gene,FRO1,as an example[J]. Science in China Series C Life Sciences,2008,51(5):402-409.
[53]ECKHARDT U, MARQUES A M, BUCKHOUT T J. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Molecular Biology,2001,45(4):437-448.
[54]SCHIKORA A, THIMM O, LINKE B, et al. Expression, localization, and regulation of the iron transporter LeIRT1 in tomato roots[J]. Plant and Soil,2006,284(1/2):101-108.
[55]BERECZKY Z, WANG H Y, SCHUBERT V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. Journal of Biological Chemistry,2003,278(27):24697-24704.
[56]LING H Q, PICH A, SCHOLZ G, et al. Genetic analysis of two tomato mutants affected in the regulation of iron metabolism[J]. Molecular & General Genetics,1996,252(1/2):87-92.
[57]LING H Q, BAUER P, BERECZKY Z, et al. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(21):13938-13943.
[58]DU J, HUANG Z, WANG B, et al. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato[J]. Annals of Botany,2015,116:23-34.
[59]GUERINOT M L. The ZIP family of metal transporters[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2000,1465(1):190-198.
[60]HUANG S, YAMAJI N, MA J F. Metal transport systems in plants[J]. Annual Review of Plant Biology,2024,75:1-25.
[61]PAVITHRA G J, MAHESH S, PARVATHI M S, et al. Comparative growth responses and transcript profiling of zinc transporters in two tomato varieties under different zinc treatments[J]. Indian Journal of Plant Physiology,2016,21(2):208-212.
[62]SUN J Q, WANG M N, ZHANG X S, et al. SlZIP11 mediates zinc accumulation and sugar storage in tomato fruits[J]. Peerj,2024,12:e17473.
[63]KABIR A H, AKTHER M S, SKALICKY M, et al. Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato[J]. Scientific Reports,2021,11(1):6040.
[64]SHANKER K, MISHRA S, SRIVASTAVA S, et al. Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum)[J]. Plant and Soil,1996,183(2):233-238.
[65]WHITE P J. Selenium metabolism in plants[J]. Biochimica et Biophysica Acta-General Subjects,2018,1862(11):2333-2342.
[66]ZUCHI S, WATANABE M, HUBBERTEN H M, et al. The Interplay between sulfur and iron nutrition in tomato[J]. Plant Physiology,2015,169(4):2624-2639.
[67]HOWARTH J R, FOURCROY P, DAVIDIAN J C, et al. Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae[J]. Planta,2003,218(1):58-64.
[68]PAOLACCI A R, CELLETTI S, CATARCIONE G, et al. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings[J]. Journal of Integrative Plant Biology,2014,56(1):88-100.
[69]WANG M K, YANG W X, ZHOU F, et al. Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.)[J]. Environmental Science and Pollution Research,2019,26(20):20475-20484.
[70]YARMOLINSKY D, BRYCHKOVA G, KURMANBAYEVA A, et al. Impairment in sulfite reductase leads to early leaf senescence in tomato plants[J]. Plant Physiology,2014,165(4):1505-1520.
[71]SHIRIAEV A, BRIZZOLARA S, SORCE C, et al. Selenium biofortification impacts the tomato fruit metabolome and transcriptional profile at ripening[J]. Journal of Agricultural and Food Chemistry,2023,71(36):13554-13565.
[72]CHEN J, HUANG X Y, SALT D E, et al. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain[J]. New Phytologist,2020,226(3):838-850.
[73]SUN S K, XU X, TANG Z, et al. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain[J]. Nature Communications,2021,12(1):1392.
[74]SUN S K, CHEN J, ZHAO F J. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants[J]. Journal of Experimental Botany,2023,74(11):3286-3299.
[75]唐之贤,董歌,史高玲,等. 江苏省大米重金属调查与膳食摄入评估[J]. 农业环境科学学报,2024,43(4):721-731.
[76]SUI F Q, ZHAO D K, ZHU H T, et al. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain[J]. Journal of Experimental Botany,2019,70(10):2857-2871.
[77]LU C N, ZHANG L X, TANG Z, et al. Producing cadmium-free Indica rice by overexpressing OsHMA3[J]. Environment International,2019,126:619-626.
[78]ZHANG L X, GAO C, CHEN C, et al. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains[J]. Environmental Science & Technology,2020,54(16):10100-10108.
[79]CHAO D Y, SILVA A, BAXTER I, et al. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana[J]. PLoS Genetics,2012,8(9):e1002923.
[80]ZHAO F J, CHANG J D. A weak allele of OsNRAMP5 for safer rice[J]. Journal of Experimental Botany,2022,73(18):6009-6012.
[81]YU E, WANG W G, YAMAJI N, et al. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain[J]. Nature Food,2022,3(8):597-607.
[82]赵曜,文朗,骆少丹,等. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报,2024,40(2):212-222.
[83]SU L H, XIE Y D, HE Z Q, et al. Network response of two cherry tomato (Lycopersicon esculentum) cultivars to cadmium stress as revealed by transcriptome analysis[J]. Ecotoxicology and Environmental Safety,2021,222:112473.
[84]LUO B F, DU S T, LU K X, et al. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants[J]. Journal of Experimental Botany,2012,63(8):3127-3136.
[85]CHEN L, WU M, JIN W, et al. Gene identification and transcriptome analysis of cadmium stress in tomato[J]. Frontiers in Sustainable Food Systems,2023,7:1303753.
[86]ANWAR A, WANG Y, CHEN M, et al. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato[J]. Journal of Hazardous Materials,2024,468:133829.
[87]KANG Y Y, QIN H Y, WANG G H, et al. Selenium nanoparticles mitigate cadmium stress in tomato through enhanced accumulation and transport of sulfate/selenite and polyamines[J]. Journal of Agricultural and Food Chemistry,2024,72(3):1473-1486.
[88]SANJAYA, HSIAO P Y, SU R C, et al. Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress[J]. Plant Cell and Environment,2008,31(8):1074-1085.
[89]ZHOU X B, YANG J, KRONZUCKER H J, et al. Selenium biofortification and interaction with other elements in plants:a review[J]. Frontiers in Plant Science,2020,11:586421.
[90]刘锐,黄家章,苗艺源,等. 中国居民隐性饥饿问题现状、挑战与应对[J]. 食品与机械,2024,40(9):1-14.
[91]周义堂,张哲,孙军娜,等. 增氧灌溉对温室番茄生长及光响应特征的影响[J]. 排灌机械工程学报,2024,42(5):517-524.
[92]吴元彩,王东登,郑旭阳,等. 激素和蔗糖对番茄子叶节位侧芽萌发与生长的影响[J]. 南方农业学报,2024,55(2):509-519.
[93]李亚波,张文健,何丽萍,等. 不同生物引发条件对番茄冷胁迫下种子活力和幼苗生理特性的影响[J]. 南方农业学报,2024,55(2):531-539.
[94]周振鹏,叶含春,王振华,等. 降解膜覆盖下磁化水滴灌对加工番茄产量和水分利用效率的影响[J]. 排灌机械工程学报,2023,41(12):1268-1275.
[95]张哲,杨润亚,朱瑾瑾,等. 地下氧灌对土壤氮素分布及番茄水氮利用效率的影响[J]. 排灌机械工程学报,2023,41(9):952-958,965.
[96]WANG Y, SUN C L, YE Z B, et al. The genomic route to tomato breeding:past,present,and future[J]. Plant Physiology,2024,195(4):2500-2514.
[97]TIEMAN D, ZHU G, RESENDE M F R, et al. A chemical genetic roadmap to improved tomato flavor[J]. Science,2017,355(6323):391-394.
[98]ZHOU Y, ZHANG Z Y, BAO Z G, et al. Graph pangenome captures missing heritability and empowers tomato breeding[J]. Nature,2022,606(7914):527-534.
[99]ZHANG J Z, LYU H, CHEN J, et al. Releasing a sugar brake generates sweeter tomato without yield penalty[J]. Nature,2024,635(8039):647-656.
[100]WANG Z, HONG Y C, GUO Z J, et al. Natural variation in a molybdate transporter confers salt tolerance in tomato[J]. Plant Physiology,2025. DOI:https://doi.org/10.1093/plphys/kiaf004.
[101]LI J, SCARANO A, GONZALEZ N M, et al. Biofortified tomatoes provide a new route to vitamin D sufficiency[J]. Nature Plants,2022,8(6):611-616.
[102]DIAZ DE LA GARZA R I, GREGORY J F, HANSON A D. Folate biofortification of tomato fruit[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(10):4218-4222.
[103]LI R, LI R, LI X D, et al. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum[J]. Plant Biotechnology Journal,2018,16(2):415-427.