参考文献/References:
[1]宋海燕,尹友谊,宋建中. 不同来源腐殖酸的化学组成与结构研究[J]. 华南师范大学学报(自然科学版),2009,41(1):61-66.
[2]程娟,何环,衡曦彤,等. 微生物降解昭通褐煤提高游离腐殖酸含量[J]. 江苏农业科学,2020,48 (17):296-301.
[3]CAO Y Y, JIN H M, ZHU N, et al. High-efficiency fungistatic activity of vegetable waste-based humic acid related to the element composition and functional group structure[J]. Process Safety and Environmental Protection,2023,169:697-705.
[4]韩剑宏,孙一博,张连科,等. 生物炭与腐殖酸配施对盐碱土理化性质的影响[J]. 干旱地区农业研究,2020,38(6):121-127.
[5]孟磊,许义,刘严蓬,等. 沸石腐殖酸复合型土壤调理剂对黄河三角洲盐碱化农田土壤的改良效果[J]. 安徽农业科学 2022,50(14):70-72,75.
[6]DU Q, ZHANG S S, SONG J P, et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions[J]. Journal of Hazardous Materials,2020,389:122115.
[7]刘超,赵建亮,尹春艳,等. 腐植酸提取及其应用的研究进展[J]. 农业与技术 2022,42(6):45-48.
[8]蔡茜茜,袁勇,胡佩,等, 腐殖质电化学特性及其介导的胞外电子传递研究进展[J]. 应用与环境生物学报,2015,21 (6):996-1002.
[9]张仪春,余震,袁勇. 水热腐殖化人工腐殖质的光谱和电化学特性研究[J]. 生态环境学报,2024,33(4):585-596.
[10]吴炳孙,韦家少,何鹏,等. 不同来源腐殖酸对香蕉园土壤理化性状及抗逆酶活性的影响[J]. 热带农业工程,2017,41 (5): 26-31.
[11]王文祥,张雷,李爱民. 废弃生物质水热腐殖化产物与介质酸碱性响应关系[J]. 大连理工大学学报,2022,62(1):9-17.
[12]CHEN P F, YANG R J, PEI Y H, et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein[J]. Science of the Total Environment,2022,828:154440.
[13]GUO X X, LIU H T, WU S B. Humic substances developed during organic waste composting:formation mechanisms,structural properties,and agronomic functions[J]. Science of the Total Environment,2019,662:501-510.
[14]闫雨东,窦森,张博岩,等. 不同比例猪粪混合玉米秸秆还田对黑土腐殖质组成及胡敏酸结构特征的影响[J]. 吉林农业大学学报,2022,44(6):733-741.
[15]舒迪,熊晨,池涌. 厨余垃圾水热处理的腐殖化特性研究[J]. 环境科学学报,2016,36(7):2563-2570.
[16]DU Q, ZHANG S S, ANTONIETTI M, et al. Sustainable leaching process of phosphates from animal bones to alleviate the world phosphate crisis[J]. ACS Sustainable Chemistry & Engineering,2020,8(26):9775-9782.
[17]LIU K R, BADAMDORJ B, YANG F, et al. Accelerated anti-Markovnikov alkene hydrosilylation with humic-acid-supported electron-deficient platinum single atoms[J]. Angewandte Chemie (International Ed),2021,60(45):24220-24226.
[18]YANG F, ANTONIETTI M. Artificial humic acids:sustainable materials against climate change[J]. Advanced Science,2020,7(5):1902992.
[19]YANG F, DU Q, SUI L, et al. One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal[J]. Bioresource Technology,2021,328:124825.
[20]YANG F, ZHANG S S, SONG J P, et al. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility[J]. Angewandte Chemie,2019,58(52):18813-18816.
[21]ZHANG S S, DU Q, CHENG K, et al. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique[J]. Chemical Engineering Journal,2020,394:124832.
[22]WANG L X, CHI Y, DU K, et al. Hydrothermal treatment of food waste for bio-fertilizer production:formation and regulation of humus substances in hydrochar[J]. Science of the Total Environment,2022,838:155900.
[23]YANG F, TANG C Y, ANTONIETTI M. Natural and artificial humic substances to manage minerals,ions,water,and soil microorganisms[J]. Chemical Society Reviews,2021,50(10):6221-6239.
[24]ZHOU X L, LI J B, ZHANG J, et al. Bioaugmentation mechanism on humic acid formation during composting of food waste[J]. Science of the Total Environment,2022,830:154783.
[25]YANG F, ZHANG S S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment,2019,686:1140-1151.
[26]LIU G, LIU P F, MENG D M, et al. COx hydrogenation to methanol and other hydrocarbons under mild conditions with Mo3S4@ZSM-5[J]. Nature Communications,2023,14(1):513.
[27]ZHANG Z Y, HU M, GUI Q F, et al. Highly enhanced direct catalytic oxidation of cyclohexane to adipic acid with molecular oxygen:dynamic collaboration between zeolite channel micro-environment and Au clusters[J]. Chemical Engineering Journal,2023,467:143501.
[28]WANG H Q, SHEN B Y, CHEN X, et al. Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst[J]. Nature Communications,2022,13(1):2924.
[29]KLUKOWSKI D, BALLE P, GEIGER B, et al. On the mechanism of the SCR reaction on Fe/HBEA zeolite[J]. Applied Catalysis B:Environmental,2009,93(1/2):185-193.
[30]王文祥,张雷,李爱民. 废弃生物质水热腐殖化产物与介质酸碱性响应关系[J]. 大连理工大学学报,2022,62(1):9-17.
相似文献/References:
[1]红梅,黄红英,肖 敏,等.“十三五”江苏省秸秆综合利用策略与秸秆产业发展的思考[J].江苏农业学报,2016,(03):534.[doi:10.3969/j.issn.1000-4440.2016.03.008]
CHANG Zhi-zhou,JIN Hong-mei,HUANG Hong-ying,et al.New thinking regarding integrated utilization strategy and industrial development of crop straws in Jiangsu province for the 13th Five Year Plan[J].,2016,(11):534.[doi:10.3969/j.issn.1000-4440.2016.03.008]
[2]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(11):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[3]李茹,陈国奇,张玉华,等.油菜和小麦秸秆水浸提液对千金子种子萌发和幼苗生长的影响及其应用[J].江苏农业学报,2018,(02):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
LI Ru,CHEN Guo-qi,ZHANG Yu-hua,et al.Influences of oilseed rape and wheat aquatic straw extract on Leptochloa chinensis seed germination and seedling growth, and the application potential[J].,2018,(11):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
[4]石含之,吴志超,王旭,等.土壤外源镉老化过程中形态变化及影响因素[J].江苏农业学报,2019,(06):1360.[doi:doi:10.3969/j.issn.1000-4440.2019.06.013]
SHI Han-zhi,WU Zhi-chao,WANG Xu,et al.Changes of chemical forms and influencing factors of soil exogenous cadmium during the aging process[J].,2019,(11):1360.[doi:doi:10.3969/j.issn.1000-4440.2019.06.013]
[5]舒同,周贝贝,段婧婧,等.添加秸秆碳源对沟渠水体中氮素去除及温室气体排放的影响[J].江苏农业学报,2023,(01):81.[doi:doi:10.3969/j.issn.1000-4440.2023.01.010]
SHU Tong,ZHOU Bei-bei,DUAN Jing-jing,et al.Changes of nitrogen removal and greenhouse gas emission in ditch water with straw carbon source[J].,2023,(11):81.[doi:doi:10.3969/j.issn.1000-4440.2023.01.010]