[1]郭爽,聂蕾,何玥,等.玉米叶部性状的QTL定位与候选基因分析[J].江苏农业学报,2024,(10):1777-1786.[doi:doi:10.3969/j.issn.1000-4440.2024.10.001]
 GUO Shuang,NIE Lei,HE Yue,et al.QTL mapping and candidate gene analysis of leaf related traits in maize[J].,2024,(10):1777-1786.[doi:doi:10.3969/j.issn.1000-4440.2024.10.001]
点击复制

玉米叶部性状的QTL定位与候选基因分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年10期
页码:
1777-1786
栏目:
遗传育种·生理生化
出版日期:
2024-10-30

文章信息/Info

Title:
QTL mapping and candidate gene analysis of leaf related traits in maize
作者:
郭爽12聂蕾12何玥12王栋12涂亮2刘鹏飞2
(1.贵州大学农学院,贵州贵阳550025;2.贵州省农业科学院旱粮研究所,贵州贵阳550006)
Author(s):
GUO Shuang12NIE Lei12HE Yue12WANG Dong12TU Liang2LIU Pengfei2
(1.Agricultural College of Guizhou University, Guiyang 550025, China;2.Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;3.Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Ministry of Agriculture and Rural Affairs, Guiyang 550006, China)
关键词:
玉米叶部性状数量性状座位(QTL)候选基因
Keywords:
maizeleaf related traitsquantitative trait locus (QTL)candidate gene
分类号:
S513
DOI:
doi:10.3969/j.issn.1000-4440.2024.10.001
文献标志码:
A
摘要:
叶片在玉米生长过程中发挥着重要作用,它能够有效地进行光合作用,为玉米提供营养物质,通过影响耐密性等影响产量提升。本研究选用QR273和T32为亲本,构建150份F2、F2∶3家系材料,结合基因型和不同环境中叶部性状的表型评价数据,利用完备区间作图法进行数量性状座位(QTL)定位。结果发现,2个环境下共检测到85个叶部性状相关QTL,其中有12个全株叶片数相关QTL、14个穗上叶片数相关QTL、22个叶长相关QTL、17个叶宽相关QTL、20个叶夹角相关QTL。结合公共数据库和生物信息学分析方法共筛选出7个候选基因。其中Zm00001d013612编码微管蛋白,参与调控细胞骨架结构组成;Zm00001d053543参与油菜素甾醇介导的信号通路;Zm00001d031291编码的蛋白质具有组蛋白乙酰化功能;Zm00001d031292参与富含羟脯氨酸糖蛋白家族基因表达的调控;Zm00001d031296调控钾离子跨膜转运蛋白活性;Zm00001d031300、Zm00001d031303参与碳水化合物代谢过程。蛋白质功能分析结果表明,这7个候选基因均参与细胞分化,与植物的生长发育息息相关。本研究结果将为深度揭示玉米叶部性状变异的遗传基础提供更丰富的理论支持。
Abstract:
Leaf plays an important role in the growth process of maize, and can effectively carry out photosynthesis, provide nutrients for maize, as well as affect yield increase by affecting density tolerance. In this paper, 150 F2 and F2∶3 family materials were constructed, using QR273 and T32 as the parents. Based on the genotype data and the phenotypic evaluation data of leaf related traits under different environments, quantitative trait locus (QTL) mapping was carried out by using inclusive composite interval mapping method. The results showed that, a total of 85 QTLs for leaf related traits were detected under two environments, including 12 QTLs relevant to total leaf number, 14 QTLs relevant to leaf number above the ear, 22 QTLs relevant to leaf length, 17 QTLs relevant to leaf width, and 20 QTLs relevant to leaf angle. Combined with the public database and bioinformatics analysis methods, seven candidate genes controlling leaf related traits were screened. Wherein Zm00001d013612 encoded tubulin and participated in the regulation of cytoskeleton structure composition, Zm00001d053543 involved in the brassinosteroid-mediated signaling pathway, and Zm00001d031291 encoded protein had the function of histone acetylation, Zm00001d031292 involved in the regulation of genes encoding hydroxyproline-rich glycoprotein family. Zm00001d031296 regulated the activity of potassium ion transmembrane transporter. Zm00001d031300 and Zm00001d031303 involved in carbohydrate metabolism. Functional analysis of proteins showed that, the seven candidate genes all involved in cell differentiation, which were closely related with plant growth and development. These results can provide relatively more theoretical support for deeply revealing the genetic basis of maize leaf related trait variation.

参考文献/References:

[1]张强,赵晓阳,张洁,等. 国审玉米品种宝景186及其栽培技术[J]. 中国种业,2023(7):127-129.
[2]高祥斌,张秀省,蔡连捷. 观赏植物叶面积测定及相关分析[J]. 福建林业科技,2009,36 (2):231-234,251.
[3]奉杰,刘鹏飞,涂亮,等. 玉米株型相关性状的QTL定位与候选基因分析[J]. 玉米科学,2023,31(4):34-42.
[4]罗巧玲,孙强,张潇誉,等. 玉米叶长QTL定位和全基因组选择[J]. 新疆农业大学学报,2021,44(1):14-19.
[5]王会涛,柳华峰,郑耀刚,等. 玉米叶型相关性状QTL定位及上位性效应分析[J]. 分子植物育种,2018,16(15):4955-4963.
[6]石云素. 玉米种质资源描述规范和数据标准[M]. 北京:中国农业出版社,2006.
[7]WU X, GUO X Y, WANG A G, et al. Quantitative trait loci mapping of plant architecture-related traits using the high-throughput genotyping by sequencing method[J]. Euphytica,2019,215:1-13.
[8]赵文明. 玉米株型相关性状QTL定位与分析[D]. 郑州:河南农业大学,2008.
[9]张旷野. 玉米叶夹角和叶宽的遗传分析及QTL定位[D]. 沈阳:沈阳农业大学,2018.
[10]路明,周芳,谢传晓,等. 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析[J]. 遗传,2007,29(9):1131-1138.
[11]常立国,何坤辉,刘建超,等. 不同环境条件下玉米叶夹角的QTL定位[J]. 玉米科学,2016,24(4):49-55.
[12]刘鹏飞,蒋锋,王汉宁,等. 玉米叶夹角和叶向值的QTL定位[J]. 核农学报,2012,26(2):231-237.
[13]王洁茹,戴银,沈学怀,等. 冠状病毒与宿主细胞骨架相互作用的研究进展[J]. 中国兽医科学,2021,51(11):1433-1437.
[14]GARDINER J. The evolution and diversification of plant microtubule-associated proteins[J]. The Plant Journal,2013,75(2):219-229.
[15]SUN W, LI Y, ZHAO Y X, et al. The TsnsLTP4, a nonspecific lipid transfer protein involved in wax deposition and stress tolerance[J]. Plant Molecular Biology Reporter,2015,33:962-974.
[16]WANG X, ZHU L, LIU B Q, et al. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules[J]. The Plant Cell,2007,19(3):877-889.
[17]ZHOU S, CHEN Q H, LI X Y, et al. MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis[J]. Plant Science,2017,264:112-121.
[18]LI S P, CHEN M, YU D L, et al. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis[J]. Plant Cell,2013,25(5):1774-1786.
[19]WASTENEYS G O. Progress in understanding the role of microtubules in plant cells [J]. Current Opinion In Plant Biology,2004,7(6):651-660.
[20]马彩霞. 陆地棉GhTUBB1基因的功能研究[D]. 太原:山西农业大学,2022.
[21]ASAMI T, NAKANO T, FUJIOKA S. Plant brassinosteroid hormones[J]. Vitamins & Hormones,2005,72:479-504.
[22]LI J H, LI Y H, CHEN S Y, et al. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis[J]. Journal of Experimental Botany,2010,61(15):4221-4230.
[23]BASIT F, LIU J X, AN J Y, et al. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses[J]. Environmental Science and Pollution Research, 2021,28:44768-44779.
[24]张存家,刘小青,韩婧,等. 基于转录组测序的红树秋茄叶片发育中差异表达基因分析[J]. 分子植物育种,2023,21(24):8075-8083.
[25]杨彦钊,童红宁. 水稻中油菜素甾醇功能机制解析与分子设计利用[J]. 生命的化学,2021,41(6):1171-1180.
[26]HOLLENDER C, LIU Z C. Histone deacetylase genes in Arabidopsis development[J]. Journal of Integrative Plant Biology,2008,50(7):875-885.
[27]LIU X C, YANG S G, ZHAO M L, et al. Transcriptional repression by histone deacetylases in plants[J]. Molecular Plant,2014,7(5):764-772.
[28]李甜甜. 小茴香挥发油促进拟南芥生长的机制研究[D]. 昆明:云南中医药大学,2023.
[29]宋凤鸣,郑重,葛起新. 富含羟脯氨酸糖蛋白在植物-病原物相互作用中的积累、作用及调控[J]. 植物生理学通讯,1992,(2):141-145.
[30]HU W S, LU Z F, GU H H, et al. Potassium availability influences the mesophyll structure to coordinate the conductance of CO2 and H2O during leaf expansion[J]. Plant,Cell & Environment,2022, 45(10):2987-3000.
[31]BLUMSTEIN M, OSEGUERA M, CASO-MCHUGH T, et al. Nonstructural carbohydrate dynamics’ relationship to leaf development under varying environments[J]. New Phytologist,2024,241(1):102-113.
[32]GAO L L, YANG G H, LI Y F, et al. A kelch-repeat superfamily gene, ZmNL4, controls leaf width in maize (Zea mays L. )[J]. The Plant Journal,2021,107(3):817-830.
[33]XIA A A, ZHENG L M, WANG Z, et al. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize[J]. New Phytologist,2023,239(6):2367-2381.
[34]TIAN J G, WANG C L, XIA J L, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J]. Science,2019,365(6454):658-664.
[35]KIM G T, TSUKAYA H, UCHIMIYA H. The ROTUNDIFOLIA3 gene of Arabidopsis thalianaencodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells[J]. Genes & Development,1998,12(15):2381-2391.
[36]KIM G T, FUJIOKA S, KOZUKA T, et al. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana[J]. The Plant Journal,2005,41(5):710-721.
[37]崔晓峰,黄海. 叶发育的遗传调控机理研究进展[J]. 植物生理学报,2011,47(7):631-640.
[38]UZAIR M, LONG H, ZAFAR S A, et al. Narrow Leaf21,encoding ribosomal protein RPS3A,controls leaf development in rice[J]. Plant Physiology,2021,186(1):497-518.
[39]BEST N B, HARTWIG T, BUDKA J, et al. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1,identifying developmental interactions between brassinosteroids and gibberellins[J]. Plant Physiology,2016,171(4):2633-2647.
[40]张全艳,张培高,徐春霞,等. 玉米叶夹角的遗传与分子调控研究进展[J]. 中国农业科技导报,2021,23(10):15-24.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(10):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(10):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(10):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(10):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(10):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(10):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(10):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(10):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(10):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(10):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2024-01-17基金项目:国家自然科学基金项目(32060460、32160451);贵州省科技支撑计划项目[黔科合支撑(2022)重点029];贵州省山地农业关键核心技术攻关项目(GZNYGJHX-2023012);贵州省育种科研基础平台创新能力建设项目[黔科合服企(2022)014];黔农科院国基后补助项目[(2021)16号、(2022)02号、(2022) 09号];贵州喀斯特山区重要作物生物育种平台建设项目[黔科合中引地(2023)033];贵州省育种科研基础平台创新能力建设项目[黔科合服企[(2022)014];贵州省科研机构创新能力建设项目[(2022)007]作者简介:郭爽(1997-),女,贵州晴隆人,硕士研究生,研究方向为作物遗传育种。(Tel)18985987996;(E-mail)18985987996@163.com通讯作者:吴迅, (Tel)18798004601;(E-mail)wuxunyong@126.com;陈泽辉,(Tel)13985441082;(E-mail)chenzh907@sina.com
更新日期/Last Update: 2024-11-21