参考文献/References:
[1]张强,赵晓阳,张洁,等. 国审玉米品种宝景186及其栽培技术[J]. 中国种业,2023(7):127-129.
[2]高祥斌,张秀省,蔡连捷. 观赏植物叶面积测定及相关分析[J]. 福建林业科技,2009,36 (2):231-234,251.
[3]奉杰,刘鹏飞,涂亮,等. 玉米株型相关性状的QTL定位与候选基因分析[J]. 玉米科学,2023,31(4):34-42.
[4]罗巧玲,孙强,张潇誉,等. 玉米叶长QTL定位和全基因组选择[J]. 新疆农业大学学报,2021,44(1):14-19.
[5]王会涛,柳华峰,郑耀刚,等. 玉米叶型相关性状QTL定位及上位性效应分析[J]. 分子植物育种,2018,16(15):4955-4963.
[6]石云素. 玉米种质资源描述规范和数据标准[M]. 北京:中国农业出版社,2006.
[7]WU X, GUO X Y, WANG A G, et al. Quantitative trait loci mapping of plant architecture-related traits using the high-throughput genotyping by sequencing method[J]. Euphytica,2019,215:1-13.
[8]赵文明. 玉米株型相关性状QTL定位与分析[D]. 郑州:河南农业大学,2008.
[9]张旷野. 玉米叶夹角和叶宽的遗传分析及QTL定位[D]. 沈阳:沈阳农业大学,2018.
[10]路明,周芳,谢传晓,等. 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析[J]. 遗传,2007,29(9):1131-1138.
[11]常立国,何坤辉,刘建超,等. 不同环境条件下玉米叶夹角的QTL定位[J]. 玉米科学,2016,24(4):49-55.
[12]刘鹏飞,蒋锋,王汉宁,等. 玉米叶夹角和叶向值的QTL定位[J]. 核农学报,2012,26(2):231-237.
[13]王洁茹,戴银,沈学怀,等. 冠状病毒与宿主细胞骨架相互作用的研究进展[J]. 中国兽医科学,2021,51(11):1433-1437.
[14]GARDINER J. The evolution and diversification of plant microtubule-associated proteins[J]. The Plant Journal,2013,75(2):219-229.
[15]SUN W, LI Y, ZHAO Y X, et al. The TsnsLTP4, a nonspecific lipid transfer protein involved in wax deposition and stress tolerance[J]. Plant Molecular Biology Reporter,2015,33:962-974.
[16]WANG X, ZHU L, LIU B Q, et al. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules[J]. The Plant Cell,2007,19(3):877-889.
[17]ZHOU S, CHEN Q H, LI X Y, et al. MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis[J]. Plant Science,2017,264:112-121.
[18]LI S P, CHEN M, YU D L, et al. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis[J]. Plant Cell,2013,25(5):1774-1786.
[19]WASTENEYS G O. Progress in understanding the role of microtubules in plant cells [J]. Current Opinion In Plant Biology,2004,7(6):651-660.
[20]马彩霞. 陆地棉GhTUBB1基因的功能研究[D]. 太原:山西农业大学,2022.
[21]ASAMI T, NAKANO T, FUJIOKA S. Plant brassinosteroid hormones[J]. Vitamins & Hormones,2005,72:479-504.
[22]LI J H, LI Y H, CHEN S Y, et al. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis[J]. Journal of Experimental Botany,2010,61(15):4221-4230.
[23]BASIT F, LIU J X, AN J Y, et al. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses[J]. Environmental Science and Pollution Research, 2021,28:44768-44779.
[24]张存家,刘小青,韩婧,等. 基于转录组测序的红树秋茄叶片发育中差异表达基因分析[J]. 分子植物育种,2023,21(24):8075-8083.
[25]杨彦钊,童红宁. 水稻中油菜素甾醇功能机制解析与分子设计利用[J]. 生命的化学,2021,41(6):1171-1180.
[26]HOLLENDER C, LIU Z C. Histone deacetylase genes in Arabidopsis development[J]. Journal of Integrative Plant Biology,2008,50(7):875-885.
[27]LIU X C, YANG S G, ZHAO M L, et al. Transcriptional repression by histone deacetylases in plants[J]. Molecular Plant,2014,7(5):764-772.
[28]李甜甜. 小茴香挥发油促进拟南芥生长的机制研究[D]. 昆明:云南中医药大学,2023.
[29]宋凤鸣,郑重,葛起新. 富含羟脯氨酸糖蛋白在植物-病原物相互作用中的积累、作用及调控[J]. 植物生理学通讯,1992,(2):141-145.
[30]HU W S, LU Z F, GU H H, et al. Potassium availability influences the mesophyll structure to coordinate the conductance of CO2 and H2O during leaf expansion[J]. Plant,Cell & Environment,2022, 45(10):2987-3000.
[31]BLUMSTEIN M, OSEGUERA M, CASO-MCHUGH T, et al. Nonstructural carbohydrate dynamics’ relationship to leaf development under varying environments[J]. New Phytologist,2024,241(1):102-113.
[32]GAO L L, YANG G H, LI Y F, et al. A kelch-repeat superfamily gene, ZmNL4, controls leaf width in maize (Zea mays L. )[J]. The Plant Journal,2021,107(3):817-830.
[33]XIA A A, ZHENG L M, WANG Z, et al. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize[J]. New Phytologist,2023,239(6):2367-2381.
[34]TIAN J G, WANG C L, XIA J L, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J]. Science,2019,365(6454):658-664.
[35]KIM G T, TSUKAYA H, UCHIMIYA H. The ROTUNDIFOLIA3 gene of Arabidopsis thalianaencodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells[J]. Genes & Development,1998,12(15):2381-2391.
[36]KIM G T, FUJIOKA S, KOZUKA T, et al. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana[J]. The Plant Journal,2005,41(5):710-721.
[37]崔晓峰,黄海. 叶发育的遗传调控机理研究进展[J]. 植物生理学报,2011,47(7):631-640.
[38]UZAIR M, LONG H, ZAFAR S A, et al. Narrow Leaf21,encoding ribosomal protein RPS3A,controls leaf development in rice[J]. Plant Physiology,2021,186(1):497-518.
[39]BEST N B, HARTWIG T, BUDKA J, et al. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1,identifying developmental interactions between brassinosteroids and gibberellins[J]. Plant Physiology,2016,171(4):2633-2647.
[40]张全艳,张培高,徐春霞,等. 玉米叶夹角的遗传与分子调控研究进展[J]. 中国农业科技导报,2021,23(10):15-24.
相似文献/References:
[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(10):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(10):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(10):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(10):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(10):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(10):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(10):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(10):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(10):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(10):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]