[1]郭自良,殷程凯,吴玄博,等.水果采摘机械手关键技术研究现状与展望[J].江苏农业学报,2024,(06):1142-1152.[doi:doi:10.3969/j.issn.1000-4440.2024.06.021]
 GUO Ziliang,YIN Chengkai,WU Xuanbo,et al.Research status and prospect of key technologies of fruit picking manipulator[J].,2024,(06):1142-1152.[doi:doi:10.3969/j.issn.1000-4440.2024.06.021]
点击复制

水果采摘机械手关键技术研究现状与展望()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年06期
页码:
1142-1152
栏目:
综述
出版日期:
2024-06-30

文章信息/Info

Title:
Research status and prospect of key technologies of fruit picking manipulator
作者:
郭自良1殷程凯1吴玄博1陈青12王金鹏12周宏平12
(1.南京林业大学机械电子工程学院,江苏南京210037;2.南京林业大学林业资源高效加工利用协同创新中心,江苏南京210037)
Author(s):
GUO Ziliang1YIN Chengkai1WU Xuanbo1CHEN Qing12WANG Jinpeng12ZHOU Hongping12
(1.College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;2.Co-innovation Center of Efficient and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing 210037, China)
关键词:
水果采摘机器人机械手运动规划末端执行器
Keywords:
fruit picking robotmanipulatormotion planningend-effector
分类号:
TP241
DOI:
doi:10.3969/j.issn.1000-4440.2024.06.021
摘要:
采摘机器人的研究对推动水果产业的发展有着重要作用。采摘机械手的运动规划与其硬件结构是采摘机器人的关键技术,影响水果采摘的效率与水果品质。本文分析了传统运动规划算法、基于生物智能的运动规划算法、基于概率采样的运动规划算法以及基于深度强化学习的运动规划算法等运动规划算法的优点和不足。同时总结了采摘机械手硬件结构的研发现状,指出目前采摘机械手存在采摘效率低、规划算法效率低、系统成本高与采摘对象单一等问题,对未来水果采摘机器人的研究进行了展望。本文为未来采摘机器人的研发提供了参考。
Abstract:
Research on picking robots plays an important role in promoting the development of fruit industry. Motion planning and hardware structure of fruit picking manipulator are the key technologies of the picking robot, which affect the picking efficiency and fruit quality. This paper analyzed the advantages and shortcomings of motion planning algorithms such as traditional motion planning algorithm, motion planning algorithm based on biological intelligence, motion planning algorithm based on probability sampling and motion planning algorithm based on deep reinforcement learning. At the same time, the current status of research and development of the hardware structure of the picking manipulator were summarized. The problems of low picking efficiency, low planning algorithm efficiency, high system cost and single picking object were pointed out. The future research of fruit picking robot was prospected. This paper provides a reference for future research and development of picking robot.

参考文献/References:

[1]张放. 2022年我国水果产量突破3亿吨[J]. 中国果业信息,2023,40(8):51.
[2]卢军,王贤锋,后德家. 水果采摘机器人视觉系统研究进展[J]. 湖北农业科学,2012,51(21):4705-4708.
[3]DROUKAS L, DOULGERI Z, TSAKIRIDIS N L, et al. A survey of robotic harvesting systems and enabling technologies[J]. Journal of Intelligent & Robotic Systems,2023,107(21). DOI:org/10.1007/s10846-022-01793-z.
[4]JIA W K, ZHANG Y, LIAN J, et al. Apple harvesting robot under information technology:a review[J]. International Journal of Advanced Robotic Systems,2020,17(3). DOI::10.1177/1729881420925310.
[5]杨旭海,周文皓,李育峰,等. 采摘机械臂路径规划算法研究现状综述[J]. 中国农机化学报,2023,44(5):161-169.
[6]YI J H, YUAN Q N, SUN R T, et al. Path planning of a manipulator based on an improved P_RRT* algorithm[J]. Complex & Intelligent Systems,2022,8(3):2227-2245.
[7]许钧翔. 六自由度机械臂避障运动规划的研究[D]. 北京:北京交通大学,2022.
[8]段洁利,王昭锐,叶磊,等. 水果采摘机械臂运动规划研究进展与发展趋势[J]. 智能化农业装备学报(中英文),2021,2(2):7-17.
[9]崔炜,朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用,59(19):10-20.
[10]李海. 六自由度机械臂运动学及路径规划研究[D]. 合肥:合肥工业大学,2021.
[11]VAN HENTEN E J, HEMMING J, VAN TUIJL B A J, et al. Collision-free motion planning for a cucumber picking robot[J]. Biosystems Engineering,2003,86(2):135-144.
[12]陈善峰,尹建军,王玉飞,等. 果实采摘机械手多关节求解方法与避障规划[J]. 农机化研究,2012,34(7):24-28.
[13]王亮. 基于深度相机的苹果采摘机器人的目标检测和路径规划算法研究[D]. 镇江:江苏大学,2019.
[14]KHATIB O. Real-time obstacle avoidance system for manipulators and mobile robots[J]. The International Journal of Robotics Research,1986,5(1):90-98.
[15]姬伟,程风仪,赵德安,等. 基于改进人工势场的苹果采摘机器人机械手避障方法[J]. 农业机械学报,2013,44(11):253-259.
[16]XIE J L, ZHANG Z Y, WEI Z Y, et al. Simulation of apple picking path planning based on artificial potential field method[C]// IOP Publishing. IOP Conference Series: Earth and Environmental Science. Philadelphia,USA:IOP Publishing,2019.
[17]ZHANG S L, YUAN T, WANG D S, et al. Structure optimization and path planning of tomato picking manipulator[C]//IEEE. 9th International Symposium on Computational Intelligence and Design. Hangzhou:IEEE,2016:356-360.
[18]SHI K J, HUANG L, JIANG D, et al. Path planning optimization of intelligent vehicle based on improved genetic and ant colony hybrid algorithm[J]. Frontiers in Bioengineering and Biotechnology,2022,10. DOI:10.3389/fbioe.2022.905983.
[19]KU T, LI J, LIU J X, et al. A motion planning algorithm for live working manipulator integrating PSO and reinforcement learning driven by model and data[J]. Frontiers in Energy Research,2022,10. DOI:10.3389/fenrg.2022.957869.
[20]MENG X L, ZHU X J. Autonomous obstacle avoidance path planning for grasping manipulator based on elite smoothing ant colony algorithm[J]. Symmetry,2022,14(9):1843. DOI:org/10.3390/sym14091843.
[21]CAO X M, YAN H S, HUANG Z Y, et al. A multi-objective particle swarm optimization for trajectory planning of fruit picking manipulator[J]. Agronomy (Basel),2021,11(11). DOI:org/10.3390/agronomy11112286.
[22]YE L, DUAN J L, YANG Z, et al. Collision-free motion planning for the litchi-picking robot[J]. Computers and Electronics in Agriculture,2021,185(2). DOI:org/10.1016/j.compag.2021.106151.
[23]ELBANHAWI M, SIMIC M. Sampling-based robot motion planning:a review[J]. IEEE Access,2014,2(1):56-77.
[24]LAVALLE S M. Rapidly-exploring random trees:a new tool for path planning[D]. Ames:Iowa State University,1998.
[25]KARAMAN S, FRAZZOLI E. Optimal kinodynamic motion planning using incremental sampling-based methods[C]//IEEE. 49th IEEE Conference on Decision and Control. Atlanta:IEEE,2010:7681-7687.
[26]LAVALLE S M, KUFFNER J J. Rapidly-exploring random trees: progress and prospects[J]. Algorithmic and Omputational Robotics,2001,5:293-308.
[27]CAO X M, ZOU X J, JIA C Y, et al. RRT-based path planning for an intelligent litchi-picking manipulator[J]. Computers and Electronics in Agriculture,2019,156:105-118.
[28]CHEN Y Y, FU Y X, ZHANG B, et al. Path planning of the fruit tree pruning manipulator based on improved RRT-Connect algorithm[J]. International Journal of Agricultural and Biological Engineering,2022,15(2):177-188.
[29]YANG W, WEN H Y, ZHANG Z S, et al. Obstacle avoidance path planning of manipulator based on improved RRT algorithm[C]//IEEE. 2021 International Conference on Computer,Control and Robotics. Shanghai:IEEE,2021.
[30]GAMMELL J D, SRINIVASA S S, BARFOOT T D, et al. Informed RRT*:optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//IEEE. IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago:IEEE,2014.
[31]WANG Y, LIU D, ZHAO H M, et al. Rapid citrus harvesting motion planning with pre-harvesting point and quad-tree[J]. Computers and Electronics in Agriculture,2022,202:107348. DOI:org/10.1016/j.compag.2022.107348 .
[32]BAC C W, ROORDA T, RESHEF R, et al. Analysis of a motion planning problem for sweet-pepper harvesting in a dense obstacle environment[J]. Biosystems Engineering,2016,146:85-97.
[33]NEMLEKAR H, LIU Z, KOTHAWADE S, et al. Robotic lime picking by considering leaves as permeable obstacles[C]// IEEE. IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague:IEEE,2021:3278-3284.
[34]荀一,李道政,王勇,等. 基于VS-IRRT算法的采摘机械臂运动规划[J]. 农业机械学报,2022,54(2):129-138.
[35]阳涵疆,李立君,高自成. 基于关节构形空间的混联采摘机械臂避障路径规划[J]. 农业工程学报,2017,33(4):55-62.
[36]徐妍,刘亚秋,刘勋,等. 林果抓取装箱作业机械臂运动规划仿真[J]. 林业工程学报,2023,8(3):123-131.
[37]KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration Spaces[J]. IEEE Transactions on Robotics and Automation,1996,12(4):566-580.
[38]BOHLIN R, KAVRAKI L E, Path planning using lazy PRM[C]//IEEE. IEEE International Conference on Robotics and Automation. Symposia Proceedings. San Francisco:IEEE,2000.
[39]蔡健荣,赵杰文,THOMAS R,等. 水果收获机器人避障路径规划[J]. 农业机械学报,2007,38(3):102-105.
[40]邹宇星,李立君,高自成. 基于改进PRM的采摘机器人机械臂避障路径规划[J]. 传感器与微系统,2019,38(1):52-56.
[41]陈青,殷程凯,郭自良,等. 苹果采摘机器人关键技术研究现状与发展趋势[J]. 农业工程学报,2023,39(4):1-15.
[42]王寅. 基于深度强化学习的机械臂路径规划研究[D]. 广州:广东工业大学,2023.
[43]HAN D, MULYANA B, STANKOVIC V, et al. A survey on deep reinforcement learning algorithms for robotic manipulation[J]. Sensors,2023,23(7):3762. DOI:org/10.3390/s23073762.
[44]LIU Y Q, GAO P, ZHENG C E, et al. A deep reinforcement learning strategy combining expert experience guidance for a fruit-picking manipulator[J]. Electronics,2022,11(3):311. DOI:org/10.3390/electronics11030311.
[45]LIN G H, ZHU L X, LI J H, et al. Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning[J]. Computers and Electronics in Agriculture,2021,188. DOI:org/10.1016/j.compag.2021.106350.
[46]郑嫦娥,高坡,GAN H,等. 基于分步迁移策略的苹果采摘机械臂轨迹规划方法[J]. 农业机械学报,2020,51(12):15-23.
[47]熊春源,熊俊涛,杨振刚,等. 基于深度强化学习的柑橘采摘机械臂路径规划方法[J]. 华南农业大学学报,2023,44(3):473-483.
[48]汪红,解伟,田莎莎,等. 基于仿人自适应DDPG算法的机械臂运动规划研究[J]. 中南民族大学学报(自然科学版),2023,42(3):334-342.
[49]吴剑桥,范圣哲,贡亮,等. 果蔬采摘机器手系统设计与控制技术研究现状和发展趋势[J]. 智慧农业(中英文),2020,2(4):17-40.
[50]SHAMSHIRI R R, WELTZIEN C, HAMEED I A, et al. Research and development in agricultural robotics:a perspective of digital farming[J]. International Journal of Agricultural and Biological Engineering,2018,11(4):1-14.
[51]WILLIAMS H A M, JONES M H, NEJATI M, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms[J]. Biosystems Engineering,2019,181:140-156.
[52]李国利,姬长英,顾宝兴,等. 多末端苹果采摘机器人机械手运动学分析与试验[J]. 农业机械学报,2016,47(12):14-21.
[53]LING X, ZHAO Y S, GONG L, et al. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision[J]. Robotics and Autonomous Systems,2019,114:134-143.
[54]赵德安. 苹果采摘机器人双目视觉系统的研究[D]. 镇江:江苏大学,2012.
[55]杨文亮. 苹果采摘机器人机械手结构设计与分析[D]. 镇江:江苏大学,2009.
[56]HOHIMER C J, WANG H, BHUSAL S, et al. Design and field evaluation of a robotic apple harvesting system with a 3d-printed soft-robotic end-effector[J]. Transactions of the ASABE,2019,62(2):405-414.
[57]XIONG Y, PENG C, GRIMSTAD L, et al. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper[J]. Computers and Electronics in Agriculture,2019,157:392-402.
[58]徐丽明,刘旭东,张凯良,等. 脐橙采摘机器人末端执行器设计与试验[J]. 农业工程学报,2018,34(12):53-61.
[59]WANG L L, ZHAO B, FAN J W, et al. Development of a tomato harvesting robot used in greenhouse[J]. International Journal of Agricultural and Biological Engineering,2017,10(4):140-149.
[60]付舜. 柑橘采摘机器人末端执行器设计与研究[D]. 重庆:重庆理工大学,2018.
[61]王晓楠,伍萍辉,冯青春,等. 番茄采摘机器人系统设计与试验[J]. 农机化研究,2016,38(4):94-98.
[62]BAETEN J, DONNE K, BOEDRIJ S, et al. Autonomous fruit picking machine:a robotic apple harvester[C]//LAUGIER C, SIEGWART R. Field and Service Robotics:Results of the 6th International Conference. Heidelberg,Berlin:Springer Berlin Heidelberg, 2008.
[63]BULANON D M, KATAOKA T. Fruit detection system and an end effector for robotic harvesting of Fuji apples[J]. International Commission of Agricultural and Biosystems Engineering,2010,12(1):203-210.
[64]DAVIDSON J R, HOHIMER C J, MO C, et al. Dual robot coordination for apple harvesting[C]// American Society of Agricultural and Biological Engineers. In Proceedings of the 2017 American Society of Agricultural and Biological Engineers Annual International Meeting. Michigan:ASABE,2017.
[65]DAVIDSON J R, SILWAL A, HOHIMER C J, et al. Proof-of-concept of a robotic apple harvester[C]//IEEE. IEEE/RSJ International Conference on Intelligent Robots & Systems. Daejeon:IEEE,2016.
[66]SILWAL A, DAVIDSON J R, KARKEE M, et al. Design,integration,and field evaluation of a robotic apple harvester[J]. Journal of Field Robotics,2017,34(6):1140-1159.
[67]DAVIDSON J R, MO C. Mechanical design and initial performance testing of an apple-picking end-effector[C]//ASME. Proceedings of the ASME International Mechanical Engineering Congress and Exposition. Houston:ASME,2015.
[68]张帆,张帅辉,张俊雄,等. 温室黄瓜采摘机器人系统设计[J]. 农业工程技术,2020,40(25):16-20.

备注/Memo

备注/Memo:
收稿日期:2023-07-04基金项目:江苏省重点研发计划项目(BE2021016)作者简介:郭自良(1998-),男 ,河南南阳人,硕士研究生,主要研究方向为机械臂路径规划。(E-mail)gzl@njfu.edu.cn通讯作者:陈青,(E-mail)qchen@njfu.edu.cn
更新日期/Last Update: 2024-07-15