马 猛,王克华,曲 亮,等. 40 周龄母鸡体尺性状的主基因+多基因混合遗传分析[J]. 江苏农业学报,2015,31(5):1091-1098. doi:10.3969/j. issn. 1000-4440. 2015. 05.023

40 周龄母鸡体尺性状的主基因+多基因混合遗传分析

马 猛1,2, 王克华1, 曲 亮1,2, 窦套存1,2, 沈曼曼1

(1. 江苏省家禽科学研究所, 江苏 扬州 225003; 2. 扬州翔龙禽业发展有限公司, 江苏 扬州 225200)

摘要: 为研究 40 周龄母鸡体尺性状的内在遗传机理,以绿壳蛋鸡黑羽纯系和白来航鸡为对象构建分离群体,测定亲本(P₁、P₂)、F₁代和 F₂代母鸡 40 周龄的体尺,运用主基因+多基因混合遗传分析软件 SEA-G4F2 对分离群体 40 周龄体尺性状进行遗传分析。结果表明:母鸡 40 周龄的胫围、胫长、胸角和胸宽的最适模型均为 E-1,即 2 对加性-显性-上位性主基因+加性-显性多基因混合遗传模型,其对应的主基因的遗传率分别为 60.89%、61.24%、55.62%和 59.43%;龙骨长和体斜长的最适模型均为 E 模型,即 2 对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型,主基因遗传率为 16.52%和 30.76%,龙骨长对应的多基因的遗传率为 7.2%。6 个体尺性状中除了龙骨长检测出多基因外,其他性状均未检测到多基因,各个性状的主基因的遗传效应均大于多基因的遗传效应。

关键词: 体尺; 主基因; 多基因; 混合遗传中图分类号: S831.2 文献标识码: A

文章编号: 1000-4440(2015)05-1091-08

Inheritance of 40-week-old hens body size traits using major gene and polygene mixed model

MA Meng^{1,2}, WANG Ke-hua¹, QU Liang^{1,2}, DOU Tao-cun^{1,2}, SHEN Man-man¹
(1. Institute of Poultry Science of Jiangsu Province, Yangzhou 225003, China; 2. Yangzhou Xianglong Poultry Co., Ltd., Yangzhou 225200, China)

Abstract: Black-feathered line of green-shelled laying hens (P_1), while leghorn chickens (P_2), and the 40-week-old hens of the segregating populations (F_1 , F_2) were measured for the body sizes traits to study the inheritance of body size using major gene plus polygene mixed model. Model E-1, a two-pair additive-dominance-epistatic major gene plus additive-dominance polygene mixed genetic model fitted the best for shank girth, shank length, chest angle and chest width of hens at 40-week-old, with the heritabilities of major gene being 60.89%, 61.24%, 55.62% and 59.43%, respectively. The best model for keel length and body slanting length was model E, a two-pair additive-dominance-epistatic majorgene plus additive-dominance-epistatic polygene mixed genetic model, with the heritabilities of major gene being 16.52% and 30.76%, and the heritability of polygene for keel length being 7.2%. The poly-

收稿日期:2015-03-06

基金项目:国家现代农业产业技术体系建设专项(CARS-41-k02);江 苏省三项工程项目[SXGC(2014)290];国家"十二五"科 技支撑项目(2011BAD28B03);江苏省扬州市重大科技成 果转化项目(YZ2012009)

作者简介:马 猛(1988-),男,河南南阳人,硕士研究生,从事动物遗传育种研究。(Tel)18796626219;(E-mail)779701121@

通讯作者:王克华(1962-),(Tel)13805276606;(E-mail)sqbreeding@ 126.com

gene heritablity in six body size traits was not detected except for keel length, and the genetic efficiency of major genes is greater than polygenes.

Key words: body size; major gene; polygene; mixed inheritance

鸡的体尺性状与众多重要的经济性状关系密切。目前,对鸡体尺的研究多集中在其与屠宰性能、生长发育规律的关系上[1-3]。与其他数量性状一样,

影响鸡体尺性状的因素较多,其中遗传因素和环境是主要影响因素。对鸡体尺性状的非遗传因素影响已有较多报道^[46]。但是,目前关于体尺性状的分子遗传机理研究较少。以往多采用传统的方法进行体尺性状的分子遗传研究,然而传统的方法有一定的局限性,不能解析单个基因座位的遗传效应^[7]。盖钧镒等^[8]、Zhang等^[9]、Wang等^[10]提出的主基因+多基因混合遗传分析方法不仅能够鉴别主基因,而且对多基因也可以进行检测,并估计出相应的遗传参数。本研究以绿壳蛋鸡黑羽纯系和白来航鸡资源群体为材料,应用主基因+多基因混合遗传模型分析软件对40周龄母鸡的体尺性状进行研究,探讨鸡40周龄体尺性状的遗传规律,确定最适模型。

1 材料与方法

1.1 试验材料

试验以黑羽绿壳蛋鸡纯系为亲本 P_1 ,以白来航鸡为亲本 P_2 ,其中 P_1 共 109 只, P_2 共 78 只, F_1 (P_1 δ × P_2 ς 、 P_2 δ × P_1 ς) 代 564 只, F_2 [(P_1 δ × P_2 ς) δ × (P_1 δ × P_2 ς) ς 、(P_2 δ × P_1 ς) δ × (P_2 δ × P_1 ς) δ] 代 1915 只。试验动物均饲养于扬州翔龙禽业发展有限公司,饲养管理条件一致,试验过程中每只鸡均单笼饲养。

1.2 测定内容与方法

测定每个世代所有母鸡在40周龄时的体尺性

表 1 各个遗传模型对应的解释 Table 1 Explain ation for of each genetic model

模型	解释	模型	解释	模型	解释
A-1	加性-显性	B-5	完全显性	D-4	1 对负向完全显性主基因+加性-显性
A-2	加性	B-6	等显性	E	2 对加性-显性-上位性主基因+加性-显性-上位性
A-3	完全显性	C	加性-显性-上位性	E-1	2 对加性-显性-上位性主基因+加性-显性
A-4	负向完全显性	C-1	加性-显性	E-2	2 对加性-显性主基因+加性-显性
B-1	加性-显性-上位性	D	1 对加性-显性主基因+加性-显性-上位性	E-3	2 对加性主基因+加性-显性
B-2	加性-显性	D-1	1 对加性-显性主基因+加性-显性	E-4	2 对等加性主基因+加性-显性
B-3	加性	D-2	1 对加性主基因+加性-显性	E-5	2 对完全显性主基因+加性-显性
B-4	等加性	D-3	1 对完全显性主基因+加性-显性	E-6	2 对等显性主基因+加性-显性

模型 A-1 到 A-4 表示只有 1 对主基因;模型 B-1 到 B-6 表示只有 2 对主基因;模型 C 和 C-1 表示只有多基因;模型 D 到 D-4 表示 1 对主基因+多基因;模型 E 到 E-6 表示 2 对主基因+多基因。

1.5 统计与分析

应用盖钩镒等^[8]提出的主基因+多基因混合遗传模型来进行分离分析,通过极大似然法和 IECM 算法对混合分布中的有关成分分布参数做出估计,

状,包括胫围、胫长、龙骨长、体斜长、胸角和胸宽 6 项指标。其中胫长、龙骨长、体斜长、胸角和胸宽的测定均按照《家禽生产性能名词术语和度量统计方法》[11]进行测定,胫围的测定方法为用细线绕鸡左胫中间部位 3 圈,然后用直尺量取 3 圈的总周长,除以 3 即为每只鸡的胫围。

1.3 数据的处理

试验所有数据均采用 Excel 2003 进行统计,用 SPSS17.0 进行正反交群体间的 t 检验,用南京农业大学研发的 SEA-G4F2 软件包进行主基因+多基因混合遗传模型分析。

数据进行分析前对 F_1 代和 F_2 代的数据进行正 反交之间的比较,如果正反交之间的差异显著,则需 要消除正反交效应。

正交效应=正交群体平均值-群体平均值 反交效应=反交群体平均值-群体平均值 用于分离分析的数据=原数据-正反交效应

1.4 遗传模型简介

利用 P_1 、 P_2 、 F_1 和 F_2 3 个世代进行分离分析的 遗传模型共有 5 大类 24 个遗传模型,其具体对应的解释见表 1。

然后对 24 个模型中 AIC(Akaike's information criterion)值进行比较,选择其中 AIC 值较小的相对应的模型进行适合性检验,然后确定出最适模型,根据最适模型的分析结果,估计其相应的一阶遗传参数和二

阶遗传参数。具体的最适模型的选择和遗传参数估计参照文献[8]。适合性检验共有 5 个统计量,即均匀性检验 U_1^2 、 U_2^2 、 U_3^2 , Smirnov 检验 nW^2 和 Kolmigorov 检验 D_n 。

$$h_{\text{mg}}^2 = \sigma_{\text{mg}}^2 / \sigma_{\text{p}}^2$$

$$h_{\text{pg}}^2 = \sigma_{\text{pg}}^2 / \sigma_{\text{p}}^2$$

其中 h2 为主基因遗传率, h2 为多基因遗传率。

2 结果与分析

2.1 40 周龄母鸡体尺性状的表型特征值及 F_2 代的次数分布

6 个体尺性状的表型特征值见表 2, 由表 2 可知, 每个性状的 F_2 代的极差均大于 P_1 、 P_2 和 F_1 代,说明每 个性状在 F_3 代都有较好的分离。6 个体尺性状中除

表 2 40 周龄母鸡 6 个体尺性状每个世代对应的表型特征值 Table 2 Phenotypic value of six body size traits in each generation

胫长 F_1 代的均值介于两个亲本之间外,其他 5 个性状的 F_1 均值均高于或低于亲本,说明这些性状均发生了超亲遗传的现象。6 个性状 F_2 代的峰度均大于 0,说明各个性状的 F_2 代分布均比正态分布要陡峭,而 6 个性状中除了胫围 F_2 代的偏度大于 0 外,其他 5 个性状的偏度均小于 0,说明胫围 F_2 代的分布右边较为分散,其他性状的 F_2 代分布则左边比较分散,且龙骨长 F_2 代的分散程度更高。

图 1 为 40 周龄母鸡 6 个体尺性状 F_2 代的次数 分布,由图 1 可知,胫围 F_2 代的分布呈现单峰的偏态分布,胫长 F_2 代的次数分布呈现单峰分布,其他性状 F_2 代的次数分布则呈现出多峰分布,这也说明每个性状在 F_2 代都出现了较好的分离,且每个性状均属于主基因控制的性状。

性状	世代	样本量	最大值	最小值	极差	平均值	标准差	峰度	偏度
胫围 (cm)	P_1	109	3.60	3.10	0.50	3.29	0.14	-0.88	0.12
	P_2	78	3.60	2.90	0.70	3.15	0.13	0.52	0.62
	\mathbf{F}_1	564	3.60	3.10	0.50	3.35	0.13	-0.72	0.01
	\mathbf{F}_{2}	1915	4.00	3.00	1.00	3.40	0.14	0.95	0.21
胫长 (cm)	P_1	109	7.45	6.21	1.24	6.83	0.25	-0.54	0.25
	P_2	78	8.80	7.31	1.49	7.75	0.27	2.25	1.00
	\mathbf{F}_1	564	7.98	6.40	1.58	7.26	0.32	-0.37	-0.06
	\mathbf{F}_2	1 915	8.64	5.84	2.80	7.29	0.32	0.49	-0.01
龙骨长 (cm)	\mathbf{P}_1	109	11.30	8.30	3.00	9.64	0.50	0.38	0.44
	P_2	78	11.00	8.50	2.50	10.08	0.42	1.98	-0.96
	\mathbf{F}_1	564	12.50	9.20	3.30	10.76	0.63	-0.11	0.01
	\mathbf{F}_2	1 915	12.70	6.30	6.40	10.20	0.64	1.56	-0.36
体斜长 (cm)	P_1	109	20.20	17.20	3.00	18.58	0.70	-0.75	0.20
	P_2	78	20.40	17.20	3.20	18.70	0.61	-0.12	0.24
	\mathbf{F}_1	564	21.40	17.00	4.40	19.21	0.84	-0.19	0.09
	\mathbf{F}_2	1 915	22.30	16.50	5.80	19.40	0.85	0.15	-0.08
胸角 (°)	\mathbf{P}_1	109	73.00	53.00	20.00	64.52	3.78	0.02	-0.08
	P_2	78	71.00	54.00	17.00	62.81	3.43	-0.25	0.11
	\mathbf{F}_1	564	68.00	46.00	22.00	55.80	3.85	-0.19	-0.02
	\mathbf{F}_2	1 915	71.00	45.00	26.00	58.00	3.88	0.17	-0.02
胸宽 (cm)	\mathbf{P}_1	109	6.73	4.71	2.02	5.65	0.35	0.24	0.08
	P_2	78	7.00	5.38	1.62	6.34	0.33	0.40	-0.63
	\mathbf{F}_1	564	6.50	4.13	2.37	5.48	0.39	-0.08	-0.08
	\mathbf{F}_2	1 915	7.67	4.47	3.20	6.21	0.46	0.05	-0.05

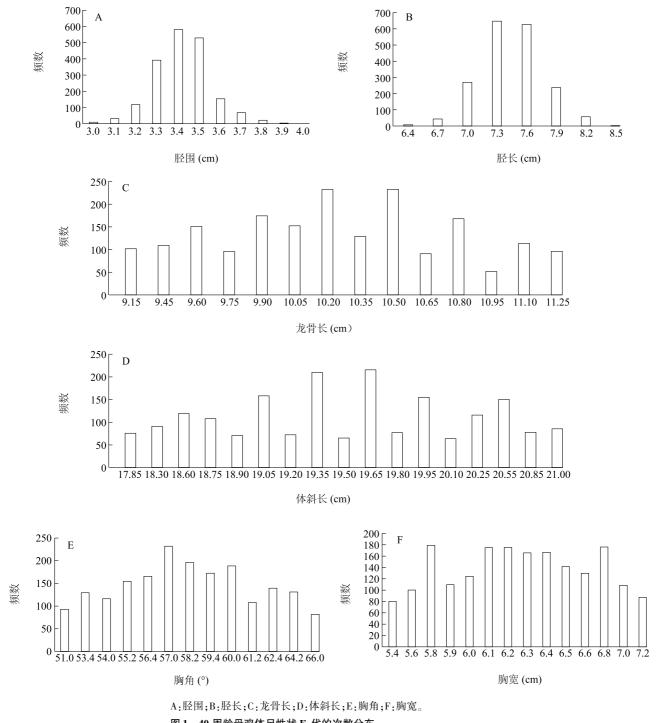


图 1 40 周龄母鸡体尺性状 F₂代的次数分布 Fig. 1 Frequency distribution of body size traits in F₂ at 40-week old

2.2 40 周龄母鸡 6 个体尺性状的最适模型的确定 及适合性检验

40 周龄母鸡 6 个体尺性状的各个模型所对应的 AIC 值见表 3,根据候选模型的选择标准,在 24 个模型中选取 AIC 值较小的模型作为候选模型进行

适合性检验。由表 3 可知, 胫围、胫长、胸角和胸宽的 24 个模型中 E 和 E-1 的 AIC 值较小, 因此选模型 E 和 E-1 作为这 4 个性状的候选模型, 龙骨长和体斜长的 24 个模型中模型 E 的 AIC 值均要远远小于其他模型, 因此模型 E 作为龙骨长和体斜长的候选

模型。最适模型的确定是根据适合性检验的统计量显著的个数进行,选择达到显著性的统计量个数最少的模型作为最适模型,若候选模型的显著统计量个数相同,则选取 AIC 值较小的作为最适模型。6个性状的候选模型的适合性检验统计量达到显著性的个数见表 4。由表 4 可知,胫围、胫长、胸角和胸宽的候选模型 E 和 E-1 的检验统计量达到显著的个

数均相等,因此选择 AIC 值较小的 E-1 作为 4 个性状的最适模型,即 2 对加性-显性-上位性主基因+加性-显性多基因混合遗传模型。龙骨长和体斜长的候选模型检验统计量显著个数分别为 1 和 6,最适模型均为 E 模型,即 2 对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型。最适模型的适合性检验见表 5。

表 3 40 周龄母鸡 6 个体尺性状各个模型所对应的 AIC 值

Table 3 AIC values of six body size traits of 40-year-old hens by each-model

模型	胫围	胫长	龙骨长	体斜长	胸角	胸宽
A-1	3 756.97	7 938.28	5 549.59	7 367.83	19 944.68	7 473.68
A-2	3 755.16	7 941.20	5 862.66	7 376.46	20 028.37	7 597.76
A-3	3 756.36	7 949.48	5 817.98	7 386.62	20 022.49	7 537.19
A-4	3 754.97	7 945.78	5 659.47	7 365.85	19 985.87	7 598.82
B-1	3 331.13	7 935.55	5 462.59	7 260.09	19 988.71	7 261.17
B-2	3 750.66	7 922.62	5 477.22	7 368.92	19 911.12	7 426.06
B-3	3 755.05	7 933.62	5 856.41	7 375.68	20 025.59	7 594.86
B-4	3 753.05	7 931.62	5 854.41	7 373.38	20 023.59	7 592.86
B-5	3 734.73	7 984.65	6 919.18	7 645.45	20 762.78	7 435.54
B-6	3 754.36	7 940.09	5 797.01	7 384.62	20 012.34	7 487.24
С	3 730.09	7 924.68	5 405.84	7 218.97	19 852.71	7 256.49
C-1	3 754.34	7 922.98	5 428.89	7 352.39	19 879.85	7 367.77
D	3 720.40	7 912.42	5 409.16	7 222.59	19 837.74	7 240.25
D-1	3 739.37	7 964.31	5 453.35	7 326.79	19 866.86	7 351.90
D-2	3 756.35	7 924.99	5 430.88	7 354.36	19 881.85	7 369.74
D-3	3 737.65	7 909.41	5 430.11	7 353.40	19 868.85	7 320.92
D-4	3 756.35	7 909.41	5 430.11	7 353.40	19 881.85	7 320.92
E	1 393.71	5 591.36	5 365.79	6 784.01	17 944.54	5 294.17
E-1	1 392.54	5 585.36	5 414.31	7 217.21	17 938.54	5 288.17
E-2	2 544.23	7 081.22	5 427.33	7 350.41	19 856.68	5 959.82
E-3	3 750.35	7 918.99	5 424.87	7 348.12	19 875.86	7 363.72
E-4	3 748.35	7 916.99	5 422.87	7 346.35	19 873.86	7 361.72
E-5	3 731.43	7 918.66	5 426.73	7 398.52	19 786.82	7 284.86
E-6	3 715.34	7 916.98	5 422.89	7 346.37	19 850.68	7 361.77

表 4 候选模型所对应的适合性检验的统计量的显著个数

Table 4 Significant numbers of statistics in adaption test for candidate models

性状	候选模型	统计量显著个数	性状	候选模型	统计量显著个数
胫围	E	10	胸角	E	11
	E-1	10		E-1	11
胫长	\mathbf{E}	12	胸宽	E	11
	E-1	12		E-1	11
体斜长	E	1	龙骨长	E	6

表 5 最适模型的适合性检验

Table 5 Test of adaption for the best model

性状	模型	世代	$U_1^{\ 2}$	${U_2}^2$	$U_3^{\ 2}$	$_{_{ m n}}W^2$	$D_{ m n}$
胫围	E-1	P_1	0.022 0(0.881)	2.617(0.106)	34.723(0)	1.097(0.002)	0.038 0(0.992
		P_2	0.008 0(0.927)	3.039(0.081)	43.801(0)	1.481(0.0002)	0.060 0(0.930
		\mathbf{F}_1	51.509 0(0)	16.591(0)	132.331(0)	11.775(0.027)	0.003 0(1.000
		\mathbf{F}_2	0.0200(0.888)	63.293(0)	978.211(0)	35.890(0.130)	0.000 3(1.000
胫长	E-1	\mathbf{P}_1	0.0010(0.971)	5.128(0.024)	79.520(0)	2.362(0)	0.162 0(0.003
		P_2	0.013 0(0.911)	3.574(0.059)	50.808(0)	1.674(0.0001)	0.045 0(0.996
		\mathbf{F}_1	51.021 0(0)	17.255(0)	122.074(0)	10.499(0.021)	0.004 0(1.000
		\mathbf{F}_2	0.000 2(0.989)	49.390(0)	787.127(0)	22.827(0.079)	0.015 0(0.803
龙骨长	E	\mathbf{P}_1	0.1020(0.750)	0.767(0.381)	5.151(0.232)	0.208(0.255)	0.006 0(1.000
		P_2	0.103 0(0.748)	0.468(0.494)	15.833(0.001)	0.583(0.025)	0.061 0(0.921
		\mathbf{F}_1	0.006 0(0.936)	0.260(0.610)	2.997(0.083)	0.589(0.024)	0.0020(1.000
		\mathbf{F}_2	0.0004(0.985)	1.029(0.311)	17.073(0)	0.776(0.008)	0.000 5(1.000
体斜长	E	\mathbf{P}_1	0.038 0(0.845)	0.164(0.686)	0.747(0.388)	0.083(0.688)	0.021 0(1.000
		P_2	0.017 0(0.895)	0.561(0.454)	6.178(0.013)	0.179(0.314)	0.017 0(1.000
		\mathbf{F}_1	0.0900(0.765)	0.019(0.892)	2.899(0.089)	0.362(0.096)	0.003 0(1.000
		\mathbf{F}_2	0.003 0(0.953)	0.089(0.765)	0.936(0.333)	0.350(0.103)	0.000 3(1.000
胸角	E-1	\mathbf{P}_1	0.009 0(0.923)	1.492(0.222)	20.364(0)	0.563(0.028)	0.023 0(1.000
		P_2	0.0020(0.966)	1.424(0.233)	21.230(0)	0.569(0.027)	0.074 0(0.759
		\mathbf{F}_1	34.141 0(0)	14.955(0.001)	51.281(0)	5.747(0.004)	0.008 0(1.000
		\mathbf{F}_2	0.000 5(0.982)	20.514(0)	331.355(0)	9.292(0.016)	0.010 0(0.984
胸宽	E-1	\mathbf{P}_1	0.0001(0.992)	2.346(0.126)	37.079(0)	0.942(0.003)	0.033 0(0.999
		P_2	0.023 0(0.879)	1.439(0.230)	29.047(0)	0.835(0.006)	0.131 0(0.130
		\mathbf{F}_1	27.185 0(0)	8.713(0.003)	70.331(0)	5.155(0.002)	0.025 0(0.814
		\mathbf{F}_2	0.007 0(0.934)	8.969(0.003)	151.275(0)	3.675(0.001)	0.006 0(1.000

括号中数值为检验统计的 P 值。

2.3 最适模型的遗传参数估计

40 周龄母鸡 6 个性状的最适模型的遗传参数估计见表 6。由表 6 可知,在一阶遗传参数的估计中,胫围、胫长、胸角和胸宽的 2 对主基因的加性效应均为正向效应,龙骨长和体斜长的 2 对主基因的加性效应为负向效应,6 个性状中除了胸角的 2 对主基因的显性效应为负向效应外,其他性状的主基因的显性效应均为正向效应。6 个性状中除了体斜长外,其他 5 个性状的主基因的加性效应和显性效应基本可以与加加效应、显显效应和加显效应、显加效应相互抵消,体

斜长的|da|>|db|,ha>hb,说明第1对主基因的加性效应和显性效应均大于第2对主基因。在二阶遗传参数的估计中,胫围、胫长、胸角和胸宽的群体方差分别为0.216、0.988、72.356和0.849,主基因所对应的方差分别为0.131、0.605、40.245和0.504,主基因的遗传率分别为60.89%、61.24%、55.62%和59.43%,龙骨长和体斜长的群体方差为0.461和0.919,主基因的方差为0.076和0.283,主基因遗传率分别为16.52%和30.76%,龙骨长对应的多基因的方差为0.033,多基因遗传率为7.20%。

表 6 40 周龄母鸡 6 个性状最适模型的遗传参数估计

Table 6 Estimations of genetic parameters of best model for each trait

遗传参数	汝	胫围	胫长	龙骨长	体斜长	胸角	胸宽
一阶遗传参数	m	3.386	7.390	10.603	19.171	62.595	6.532
	da	1.525	3.549	-0.321	-4.927	30.120	2.569
	db	1.525	3.549	-0.320	-4.900	30.119	2.569
	ha	0.177	0.098	0.319	4.842	-1.160	0.536
	hb	0.177	0.098	0.319	4.442	-1.160	0.536
	i	-0.177	-0.098	-0.319	-4.840	1.160	-0.536
	jab	-1.525	-3.549	0.319	4.480	-30.119	-2.569
	jba	-1.525	-3.549	0.319	4.890	-30.119	-2.569
	l	-0.174	-0.098	-0.319	-4.441	1.160	-0.536
	[d]	-2.980	-7.554			-59.303	-5.480
	[h]	-0.283	-0.391			-7.030	-1.717
二阶遗传参数	$\sigma_{ m p}^2$	0.216	0.988	0.461	0.919	72.356	0.849
	$\sigma_{ ext{mg}}^2$	0.131	0.605	0.076	0.283	40.245	0.504
	$\sigma_{ m pg}^2$			0.033			
	$h^2_{\rm mg}(\%)$	60.89	61.24	16.52	30.76	55.62	59.43
	$h_{ m pg}^2(\%)$			7.2			

3 讨论

王春娥等^[12]的研究结果表明,运用主基因+多基因混合遗传分析软件检测到的主基因的对数与用QTL 定位检测出来的主基因对数是一致的。盖均镒等^[13]认为用单个世代的分析效果没有多世代的分析效果好,原因是加性遗传参数体现在两个纯合的亲本均值差异上,而显性遗传参数在亲本与F₁代的均值差异中就可以体现出来。目前,对主基因+多基因混合遗传分析软件的应用大多集中在植物数量性状的研究上^[14-17],动物数量性状上的研究则有王克华^[18]、曲亮^[19-20]等应用主基因+多基因混合遗传模型对鸡12 周龄体质量、鸡40 周龄蛋质量、冠长、冠高和冠厚的研究,确定鸡12 周龄体质量的最适模型为 E-6 模型,鸡40 周龄蛋质量、冠长、冠高和冠厚的研究,确定鸡12 周龄体质量的最适模型为 E 模型。

本研究结果表明,40 周龄母鸡体尺性状中的胫围、胫长、胸角和胸宽的最适模型均为 E-1 模型,即2 对加性-显性-上位性主基因+加性-显性多基因混合遗传模型,龙骨长和体斜长的最适模型均为 E 模型,即2 对加性-显性-上位性主基因+加性-显性-上

位性多基因混合遗传模型, 胫围、胫长和胸宽的 2 对主基因的加性效应值和显性效应值均为正值, 龙骨长和体斜长的 2 对主基因的加性效应值为负值, 显性效应值为正值, 说明胫围、胫长、胸角和胸宽越大, 而龙骨长和体斜长越小的个体对后代的影响越大。本研究结果显示 40 周龄母鸡的胫围、胫长、胸角和胸宽的主基因遗传率均高于 50%,每个性状的主基因效应均远远大于多基因的遗传效应, 因此, 在对40 周龄母鸡的胫围、胫长、胸角和胸宽等性状进行遗传改良的过程中要注重对主基因的选择, 40 周龄母鸡的龙骨长和体斜长的主基因与多基因的遗传率之和均小于 50%, 这说明非遗传因素对这 2 个性状的影响较大, 在后期的选育过程中, 要注重改善环境条件, 降低非遗传因素对龙骨长和体斜长的影响。

虽然主基因+多基因混合遗传模型的应用比较 广泛,但是其本身还存在一定的局限性,只能够将主 基因的对数为1~3的检测出来。在动物数量性状 上开展主基因+多基因的应用,不仅可以丰富动物 数量性状的研究方法,而且可以较好地了解性状本 身的内在遗传规律,能为与主基因紧密连锁的分子 标记的发掘和分子标记辅助选择奠定一定的理论基 础。

参考文献:

- [1] 李俊营,陈丽园,詹 凯,等. 黄山黑鸡体尺、屠宰性能和肉品质测定及相关分析[J]. 中国家禽,2014,36(14):52-54.
- [2] 祝碧琴,曾 涛,李进军,等. 白耳黄鸡体尺及屠宰性能的相关性分析[J]. 浙江农业科学,2012(3):403-404.
- [3] 李乃宾,杨芬霞,杜炳旺,等.珍禽贵妃鸡体尺性状与屠宰性能的相关分析[J].南方农业学报,2014,45(7):1281-1285.
- [4] 童海兵,王克华,陆俊贤,等.鸡种,日粮能量和日粮蛋白质对体尺性状的影响[J].中国家禽,2004,8(1):96-99.
- [5] 孙桂荣,康相涛,李国喜,等.不同饲养方式对卢氏鸡体尺和屠体性状的影响[J].饲料广角,2008(16);40-42.
- [6] 潘 文,杜炳旺,王润莲,等. 饲粮钙水平对贵妃鸡生长性能、体尺性状及趾骨特性的影响[J]. 动物营养学报,2014,24(6): 1660-1667.
- [7] 陈学军,方 荣,周坤华,等. 辣椒果实性状主基因+多基因遗传分析[J]. 西北植物学报,2012,32(2);246-251.
- [8] 盖钩镒,章元明,王建康. 植物数量性状遗传体系[M]. 北京: 科学出版社,2003.
- [9] ZHANG Y M, GAI J Y. The EIM algorithm in the joint segregation analysis of quantitative traits [J]. Genetical Research, 2003, 81(2):157-163.
- [10] WANG J, FODLIED D W, COOPER M, et al. Power of the joint segregation analysis method for testing mixed major-gene and poly-

- gene inheritance models of quantitative traits [J], Theoretical and Applied Genetics, 2001, 103(5):804-816.
- [11] NY/T823-2004 家禽生产性能名词术语和度量统计方法[S].
- [12] 王春娥,盖钧镒,傅三雄,等. 大豆豆腐和豆乳得率的遗传分析与 QTL 定位[J]. 中国农业科学,2008,41(5):1274-1282.
- [13] 盖钩镒,王建康.利用回交或 $F_{2:3}$ 家系世代鉴定数量性状主基因-多基因混合遗传模型[J].作物学报,1998,24(4):402-409.
- [14] 周清元,崔 翠,阴 涛,等. 甘蓝型油菜角果长度的主基因+ 多基因混合遗传模型[J]. 作物学报,2014,40(8):1493-1500.
- [15] 李洪戈,余坤江,郭婷婷,等. 甘蓝型油菜无花瓣性状的主基因+多基因遗传分析[J]. 江苏农业学报,2014,30(2):253-258.
- [16] 李兰周,刘风珍,万勇善,等. 花生荚果和籽仁相关性状的主基因+多基因混合遗传模型分析[J]. 华北农学报,2013,28(5):116-123.
- [17] 马 娟. 玉米主要株型性状的主基因+多基因遗传模型分析 [D]. 新乡:河南科技学院,2012.
- [18] 王克华,章元明,曲 亮,等.鸡12周龄体重的主基因+多基因混合遗传分析[J].江西农业大学学报,2011,33(1):123-127.
- [19] 曲 亮,马 猛,王克华,等. 鸡 40 周龄蛋重主基因-多基因混合遗传模型分析[J]. 中国家禽,2014,36(7):10-16.
- [20] 曲 亮,王克华,窦套存,等.鸡第二性征的主基因+多基因混合遗传分析[C]//中国畜牧兽医学会,第十六次全国动物遗传育种学术讨论会论文集.扬州:中国畜牧兽医学会,2011:508.

(责任编辑:陈海霞)