[1]胡炜晨,张同,胡振,等.禾本科植物细胞壁合成调控研究进展[J].江苏农业学报,2018,(02):472-480.[doi:doi:10.3969/j.issn.1000-4440.2018.02.036]
 HU Wei-chen,ZHANG Tong,HU Zhen,et al.Progress on cell wall biosynthesis and regulation in grasses[J].,2018,(02):472-480.[doi:doi:10.3969/j.issn.1000-4440.2018.02.036]
点击复制

禾本科植物细胞壁合成调控研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年02期
页码:
472-480
栏目:
综述
出版日期:
2018-04-25

文章信息/Info

Title:
Progress on cell wall biosynthesis and regulation in grasses
作者:
胡炜晨张同胡振王令强
(华中农业大学植物科学技术学院/华中农业大学生物质和生物能源中心,湖北武汉430070)
Author(s):
HU Wei-chenZHANG TongHU ZhenWANG Ling-qiang
(College of Plant Science and Technology/Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China)
关键词:
细胞壁脆秆突变体QTL基因共表达分析基因调控网络
Keywords:
cell wallbrittle culmqualitative traits loci(QTL)gene co-expression analysisgene regulation network
分类号:
S312
DOI:
doi:10.3969/j.issn.1000-4440.2018.02.036
文献标志码:
A
摘要:
细胞壁是植物重要的特征结构,与植物的生长发育和对外界环境胁迫反应密切相关。秸秆的机械强度是一个重要的农艺性状,与产量、抗性等相关。而秸秆中细胞壁的主要成分纤维素、木质素、半纤维素等可作为重要的化工原料和生物质来源。秸秆理化性状的遗传改良和综合利用策略的形成均有赖于对细胞壁合成调控机理的认识。本文综述了脆秆突变体基因的定位、图谱克隆和功能研究,数量性状位点(QTL)作图和解析细胞壁相关性状的遗传基础以及共表达分析在探索细胞壁生物合成的候选基因和建立辅助细胞壁合成的调节网络中的应用等禾本科植物细胞壁形成和调控研究领域取得的最新进展。此外,还讨论了这些方面的几个潜在的具有挑战性的问题。
Abstract:
Plant cell wall is an important characteristic structure, closely related to plant growth and environmental responses. The mechanical strength of crop straw was an important agronomic character, related to yield, resistance, etc. The main components of cell wall in the straw were cellulose, lignin and hemicellulose, which could serve as important chemical raw materials and biomass sources. The genetic improvement and comprehensive utilization strategy of straw biomass largely depended on the understanding of the regulation mechanism of cell wall biosynthesis. This study summarized recent progress achieved in the areas of plant cell wall formation and regulation in grass species including the characterization, map-based cloning and functional studies of genes for brittle culm mutants, qualitative traits loci (QTL) mapping and dissection of the genetic basis for cell wall related traits, co-expression analysis in exploring the candidate genes for cell wall biosynthesis and in the establishment of regulatory networks of secondary cell wall synthesis. In addition, several challenging questions and potential issues regarding this area were discussed.

参考文献/References:

[1]杨惠杰,杨仁崔,李义珍,等.水稻茎秆性状与抗倒性的关系[J].福建农业学报, 2000,15(2): 1-7.
[2]王健,朱锦懋,林青青,等. 小麦茎秆结构和细胞壁化学成分对抗压强度的影响[J].科学通报, 2006, 5(1): 1-7.
[3]刘畅,李来庚. 水稻抗倒伏性状的分子机理研究进展[J].中国水稻科学, 2016, 30(2): 216-222.
[4]彭良才. 论中国生物能源发展的根本出路[J].华中农业大学学报(社科版), 2011, 92(2): 1-6.
[5]王艳婷,徐正丹,彭良才. 植物细胞壁沟槽结构与生物质利用研究展望[J].中国科学(生命科学), 2014, 44(8): 766-774.
[6]黄成,李来庚. 植物细胞壁研究与生物质改造利用[J].科学通报, 2016, 61(34): 3623-3629.
[7]WANG Y T, FAN C F, HU H Z, et al. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops[J].Biotechnology Advances, 2016, 34(5): 997-1017.
[8]KENNEDY D, NORMAN C. What don’t we know?[J].Science, 2005, 309: 75.
[9]NAGAO S, TAKAHASHI M. Trial construction of twelve linkage groups in japanese rice: (genetical studies on rice plant)[J].Journal of the Faculty of Agriculture Hokkaido Imperial University, 1963, 53: 72-130.
[10]KINOSHITA T. Report of committee on gene symbolization, nomencla-ture and linkage groups[J].Rice Genetics Newsletter, 1995, 12: 9-153.
[11]LI Y, QIAN Q, ZHOU Y, et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants[J].Plant Cell, 2003, 15: 2020-2031.
[12]TANAKA K, MURATA K, YAMAZAKI M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J].Plant Physiology, 2003, 133: 73-83.
[13]YAN C J, YAN S, ZENG X H, et al. Fine mapping and isolation of Bc7(t), allelic to OsCesA4[J].Journal of Genetics and Genomics, 2007, 34: 1019-1027.
[14]HIRANO K, KOTAKE T, KAMIHARA K, et al. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis[J].Planta, 2010, 232: 95-108.
[15]XIONG G Y, LI R, QIAN Q, et al. The rice dynamin-related protein DRP2B mediates membrane trafficking and thereby plays a critical role in secondary cell wall cellulose biosynthesis[J].Plant Journal, 2010, 64: 56-70.
[16]ZHOU Y H, LI S B, QIAN Q, et al. BC10, a DUF266-containing and golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.)[J].Plant Journal, 2009, 57: 446-462.
[17]ZHANG B, DENG L, QIAN Q, et al. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice[J].Plant Molecular Biology, 2009, 71: 509-524.
[18]ZHANG M, ZHANG B, QIAN Q, et al. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice[J].Plant Journal, 2010, 63: 312-328.
[19]LI X J, YANG Y, YAO J L, et al. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice[J].Plant Molecular Biology, 2009, 69: 685-697.
[20]ZHANG B C, LIU X L, QIAN Q, et al. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 5110-5115.
[21]ZHANG S J, SONG X Q, YU B S, et al. Identification of quantitative trait loci affecting hemicellulose characteristics based on cell wall composition in a wild and cultivated rice species[J].Molecular Plant, 2011, 5(1): 162-175.
[22]SONG X Q, LIU L F, JIANG Y J, et al. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants[J].Molecular Plant, 2013, 6: 768-780.
[23]WU B, ZHANG B, DAI Y, et al. Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice[J].Plant Physiology, 2012, 159: 1440-1452.
[24]LIU L, SHANG-GUAN K, ZHANG B C, et al. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils[J].Plos Genetics, 2013, 9: e1003704.
[25]GAO Y, HE C, ZHANG D, et al. Two trichome birefringence-like proteins mediate xylan acetylation, which is essential for leaf blight resistance in rice[J].Plant Physiology, 2017, 173: 470-481.
[26]ZHANG B, ZHANG L, LI F, et al. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase[J].Nature Plants, 2017, 3: 17017.
[27]YANG C H, LI D Y, LIU X, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.)[J].BMC Plant Biology, 2014, 14: 158.
[28]YE Y, LIU B, ZHAO M, et al. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice[J].Plant Molecular Biology, 2015, 89: 385-401.
[29]张保才,周奕华. 植物细胞壁形成机制的新进展[J].中国科学, 2015, 45(6): 544-556.
[30]ZHANG M L, WEI F, GUO K, et al. A novel FC116/BC10 mutation distinctively causes alteration in the expression of the genes for cell wall polymer synthesis in rice[J].Frontiers in Plant Science,2016, 7(83):1366.
[31]LI F C, XIE G S, HUANG J F, et al. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice[J].Plant Biotechnology Journal, 2017,15(9): 1093-1104.
[32]CARDINAL A J, LEE M, MOORE K J. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize[J].Theoretical and Applied Genetics, 2003, 106: 866-874.
[33]KRAKOWSKY M D, LEE M, COORS J G. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue[J].Theoretical and Applied Genetics, 2005, 111: 337-346.
[34]KRAKOWSKY M D, LEE M, COORS J G. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) II: leaf sheath tissue[J].Theoretical and Applied Genetics, 2006, 112: 717-726.
[35]BARRIERE Y, THOMAS J, DENOUE D. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838×F286[J].Plant Science, 2008, 175: 585-595.
[36]BARRIERE Y, MECHIN V, DENOUE D, et al. QTL for yield, earliness and cell wall digestibility traits in topcross experiments of F838×F286 RIL progeny[J].Crop Science, 2010, 50: 1761-1772.
[37]BARRIERE Y, MECHIN V, LEFEVRE B, et al. QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern iodent line[J].Theoretical and Applied Genetics, 2012, 125: 531-549.
[38]胡标林,孔祥礼,包劲松,等. 植物细胞壁性状的基因定位与克隆研究进展[J].江西农业学报, 2006, 18(2): 17-21.
[39]RANJAN P, YUN T, ZHANG X, et al. Bioinformatics-based identification of candidate genes from QTLs associated with cell wall traits in Populus[J].Bioenergy Research, 2010, 3: 172-182.
[40]VERMA V, WORLAND A J, SAVERS E J, et al. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat[J].Plant Breeding, 2005, 124: 234-241.
[41]张坤普,赵亮,海燕,等. 小麦白粉病成株抗性和抗倒伏性及穗下节长度的 QTL定位[J].作物学报, 2008, 34(8): 1350-1357.
[42]BURTON R A, WILSON S M, HRMOVA M, et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-b-D-glucans[J].Science, 2006, 311: 1940-1942.
[43]OKAWA T, HOBO T, YANO M, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J].Nature Communications, 2010, 1: 132-148.
[44]BARRIERE Y, LAPERCHE A, BARROT L, et al. QTL analysis of lignification and cell wall digestibility in the Bay-0 X Shahdara RIL progeny of Arabidopsis thaliana as a model system for forage plant[J].Plant Science, 2005, 168: 1235-1245.
[45]MOUILLE G, WITUCKA-WALL H, BRUYANT M P, et al. Quantitative trait loci analysis of primary cell wall composition in Arabidopsis[J]. Plant Physiology, 2006, 141: 1035-1044.
[46]LORENZANA R E, LEWIS M F, JUNG H J G, et al. Quantitative trait loci and trait correlationsfor maize stover cell wall compositionand glucose release for cellulosic ethanol[J].Crop Science, 2010, 50: 541-555.
[47]PENNING B W, SYKES R W, BABCOCK N C, et al. Genetic determinants for enzymatic digestion oflignocellulosic biomass are independent of those forlignin abundance in a maize recombinantinbred population[J].Plant Physiology, 2014, 165: 1475-1487.
[48]MARCOTULI I, HOUSTON K, WAUGH R, et al. Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats[J].Plos One, 2015, 10(7): e0132787.
[49]HASSAN A S, HOUSTON K, LAHNSTEIN J, et al. A Genome wide association study of arabinoxylan content in 2-row spring barley grain[J].Plos One, 2017, 12(8): e0182537.
[50]WILLIAMS P C, NORRIS K H. Near-infrared technology in the agricultural and food industries[M]. St Paul, MN:American Association of Cereal Chemists Inc, 1987.
[51]JIN S Y, CHEN H Z. Near-infrared analysis of the chemical composition of rice straw[J].Industrial Crops and Products, 2007, 26: 207-211.
[52]SOHN M, HIMMELSBACH D S, BARTON F E, et al. Near-infrared analysis of ground barley for use as a feedstock for fuel ethanol production[J].Applied Spectroscopy, 2007, 61: 1178-1183.
[53]POHL F, SENN T. A rapid and sensitive method for the evaluation of cereal grains in bioethanol production using near infrared reflectance spectroscopy[J].Bioresource Technology, 2011, 102: 2834-2841.
[54]DIGMAN M F, SHINNERS K J, CASLER M D, et al. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production[J].Bioresource Technology, 2010, 101: 5305-5314.
[55]BRUUN S, JENSENA J W, MAGIDA J, et al. Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy[J].Industrial Crops and Products, 2010, 31: 321-326.
[56]TEMPLETON D W, SLUITER A D, HAYWARD T K, et al. Assessing corn stover composition and sources of variability via NIRS[J].Cellulose, 2009, 16: 621-639.
[57]HUANG J F, XIA T, LI A, et al. A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus[J].Bioresource Technology, 2012, 121: 274-281.
[58]WU L M, LI M, HUANG J F, et al. A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum[J].Bioresource Technology, 2015, 177: 118-124.
[59]DECKER S R, BRUNECKY R, TUCKER M P, et al. High-throughput screening techniques for biomass conversion[J].Bioenergy Research, 2009, 2: 179-192.
[60]SANTORO N, CANTU S L, TORNQVIST C E, et al. A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility[J].Bioenergy Research, 2010, 3: 93-102.
[61]MUTTONI G, JOHNSON J M, SANTORO N, et al. A high-throughput core sampling device for the evaluation of maize stalk composition[J].Biotechnology for Biofuels, 2012, 5: 27.
[62]TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, populus trichocarpa (Torr & Gray)[J].Science, 2006, 313: 1596-1604.
[63]GOU J Y, WANG L J, CHEN S P, et al. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis[J].Cell Research, 2007, 17: 422-434.
[64]GUILLAUMIE S, MZID R, MCHIN V, et al. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco[J].Plant Molecular Biology, 2010, 72: 215-234.
[65]IHMELS J, BERGMANN S, BERMAN J, et al. Comparative gene expression analysis by differential clustering approach: application to the candida albicans transcription program[J].Plos Genetics, 2005, 1:1-14.
[66]AOKI K, OGATA Y, HIBATA D. Approaches for extracting practical information from gene coexpression networks in plant biology[J].Plant Cell Physiol, 2007, 48: 381-390.
[67]HARBISON S T, CARBONE M A, AYROLES J F, et al. Co-regulated transcriptional networks contribute to natural genetic variation in drosophila sleep[J].Nature Genetics, 2009, 41: 371-375.
[68]NAYAK R R, KEARNS M, SPIELMAN R S, et al. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions[J].Genome Research, 2009, 19: 1953-1962.
[69]PERSSON S, WEI H, MILNE J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 8633-8638.
[70]RUPRECHT C, PERSSON S. Co-expression of cell wall-related genes: new tools and insights[J].Frontiers in Plant Science, 2012, 3(3): 83.
[71]BROWN D M, ZEEF L A, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J].Plant Cell, 2005, 17: 2281-2295.
[72]GU Y, KAPLINSKY N, BRINGMANN M, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 12866-12871.
[73]WANG L, XIE W, CHEN Y, et al. A dynamic gene expression atlas covering the entire life cycle of rice[J].Plant Journal, 2010, 61: 752-766.
[74]WANG L Q, GUO K, LI Y, et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J].BMC Plant Biology, 2010, 10: 282-298.
[75]XIE G, YANG B, XU Z, et al. Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice[J].Plos One, 2013, 8(1): e50171.
[76]GUO K, ZOU W H, FENG Y Q, et al. An integrated genomic and metabolomic framework for cell wall biology in rice[J].BMC Genomics, 2014, 15: 596.
[77]ZHONG R, LEE C H, ZHOU J L, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J].Plant Cell, 2008, 20: 2763-2782.
[78]TAYLOR-TEEPLES M, LIN L, LUCAS M D, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis[J].Nature, 2015, 517: 571-575.
[79]FERNANDES A N, THOMAS L H, ALTANER C M, et al. Nanostructure of cellulose microfibrils in spruce wood[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 1195-1203.
[80]PATTATHIL S, AVCI U, BALDWIN D, et al. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodie[J].Plant Physiol, 2010, 153: 514-525.
[81]DING S Y, LIU Y S, ZENG Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?[J].Science, 2012, 338: 1055-1060.
[82]ZHONG R Q, LEE C, MCCARTHY R L, et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors[J].Plant Cell Physiology, 2011,52: 1856-1871.
[83]ENDLER A, KESTEN C, SCHNEIDER R, et al. A mechanism for sustained cellulose synthesis during salt stress[J].Cell, 2015, 162: 1353-1364.
[84]HUANG D, WANG S, ZHANG B, et al. A gibberellin-midiated DELLA-NAC signaling cascade regulates cellulose synthesis in rice[J].Plant Cell, 2015, 27: 1681-1696.
[85]徐宗昌,王萌,孔英珍. 油菜素内酯参与初生细胞壁代谢研究进展[J].安徽农业科学, 2016, 44(32): 1-5, 8.

备注/Memo

备注/Memo:
收稿日期:2017-09-01 基金项目:中央高校科研基金项目(2662015PY207);国家自然科学基金项目(31771775、31171524) 作者简介:胡炜晨(1993-),男,湖南湘乡人,硕士研究生,研究方向为小麦脆秆基因的遗传定位和克隆。(E-mail)huweichen022@vip.qq.com 通讯作者:王令强,(E-mail)lqwang@mail.hzau.edu.cn
更新日期/Last Update: 2018-05-04