[1]初龙,李伟,李欣亚,等.重金属超富集植物种子内生真菌多样性及其重金属抗性[J].江苏农业学报,2017,(01):43-49.[doi:10.3969/j.issn.1000-4440.2017.01.007 ]
 CHU Long,LI Wei,LI Xin ya,et al.Diversity and heavy metal resistance of endophytic fungi from seeds of hyperaccumulators[J].,2017,(01):43-49.[doi:10.3969/j.issn.1000-4440.2017.01.007 ]
点击复制

重金属超富集植物种子内生真菌多样性及其重金属抗性()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年01期
页码:
43-49
栏目:
遗传育种·生理生化
出版日期:
2017-02-28

文章信息/Info

Title:
Diversity and heavy metal resistance of endophytic fungi from seeds of hyperaccumulators
作者:
初龙李伟李欣亚熊帜李海燕
(昆明理工大学生命科学与技术学院,云南昆明650500)
Author(s):
CHU LongLI WeiLI XinyaXIONG ZhiLI Haiyan
(Faculty of Life Sciences and Technology,Kunming University of Science and Technology, Kunming 650500, China)
关键词:
重金属超富集植物种子内生真菌多样性重金属抗性
Keywords:
hyperaccumulatorseedendophytic fungidiversityheavy metal tolerance
分类号:
Q939.99
DOI:
10.3969/j.issn.1000-4440.2017.01.007
文献标志码:
A
摘要:
为探讨重金属超富集植物种子中内生真菌的种群组成及其在植物重金属耐受和富集方面可能发挥的生态学功能,通过分离纯化小花南芥(Arabis alpine)及土荆芥(Chenopodium ambrosioides)两种重金属超富集植物种子内生真菌,结合形态学特征和分子生物学数据对其进行鉴定,研究其多样性,并通过对内生真菌在含不同重金属培养基上生长速率的测定,研究其重金属抗性。结果显示:小花南芥和土荆芥两种重金属超富集植物种子中内生真菌的种类和数量均较少,存在绝对优势类群。两种植物中内生真菌的定殖率和多样性指数分别为740%、420%和0.78、135,远低于其他非极端环境植物内生菌的定殖率和多样性。重金属抗性测定结果表明,优势类群菌株的重金属抗性较其他类别突出,抗性菌株比例较高,个别菌株还表现为镉毒理兴奋型。通过最小抑制浓度检测发现镉毒理兴奋型菌株FXZ2可耐受40 mmol/L Pb2+、60 mmol/L Zn2+和220 mmol/L Cd2+。这些菌株可能在宿主植物抵御不良环境及重金属累积过程中发挥着重要作用。
Abstract:
To understand the population composition of endophytic fungi (EF) from hyperaccumulators seeds as well as their possible ecological role in host plants’ heavy metal (HM) tolerance and accumulation,the culturable EF from the seeds of two HM hyperaccumulators Arabis alpina and Chenopodium ambrosioides were isolated and further identified based on their morphological characteristics and molecular analysis.The HMs tolerance capacity was assessed through the growth rate measuring on PDA plates which contained different contents of HMs. The results showed that both the diversity and the colonization rate (CR) of EF in the seeds of two hyperaccumulators were lower, and the most dominant EF in them was different, too. The CR of A. alpine and C. ambrosioides were 74.0% and 42.0%, and the Shannon Index of them were 0.78 and 135, respectively. They were lower than those from the plant growing in nonextreme environment. HMs tolerance tests indicated that the isolates of dominant genera/species showed better HMs tolerance capacity than that of the other genera/species isolates (with higher ratio of resistant isolates), and some of them showed Cd toxicity excitatory. The result of minimum inhibitory concentration (MIC) tests indicated that the strain FXZ2 could tolerate lead, zinc and cadmium as high as 40 mmol/L, 60 mmol/L and 220 mmol/L, respectively. These strains may play an important role in improving host plants stress tolerance and affecting their HM accumulation.

参考文献/References:

[1]俞华齐,王娟,姜忍忍,等. 重金属铬单克隆抗体特异性ELISA免疫检测方法的建立[J].江苏农业学报,2016,32(2):460-466.
[2]刘菊梅,栗利曼,沈渭寿,等. 黄河包头段灌区玉米重金属污染及人群健康风险评价[J].南方农业学报,2015,46(9):1591-1595.
[3]樊佳奇,牛来春,庞磊.云南地区不同园林植物对土壤重金属的吸收富集特征[J].江苏农业科学,2016,44(7):467-472.
[4]BELL T H, JOLY S, PITRE F E, et al. Increasing phytoremediation efficiency and reliability using novel omics approaches[J]. Trends in Biotechnology, 2014, 32(5): 271-280.
[5]张晓东,热沙来提?买买提,刘志刚.荠菜对土壤重金属镉(Cd)和铅(Pb)的修复效应[J].江苏农业科学,2016,44(4):477-481.
[6]MA Y, OLIVEIRA R S, NAI F, et al. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J]. Journal of Environmental Management, 2015, 156: 62-69.
[7]RAJKUMAR M, AE N, PRASAD M N V, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology, 2010, 28(3): 142-149.
[8]STONE J K, BACON C W, WHITE J F. An overview of endophytic microbes: endophytism defined[J]. Microbial Endophytes, 2000, 3: 29-33.
[9]RAJKUMAR M, SANDHYA S, PRASAD M N V, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnology Advances, 2012, 30(6): 1562-1574.
[10]LI H Y, WEI D Q, SHEN M, et al. Endophytes and their role in phytoremediation[J]. Fungal Diversity, 2012, 54(1): 11-18.
[11]王吉秀,祖艳群,陈海燕,等. 表面活性剂对小花南芥(Arabis alpina L. var. Parviflora Franch)累积铅锌的促进作用[J]. 生态环境学报, 2010, 19(8): 1923-1929.
[12]吴双桃,吴晓芙,胡曰利,等. 铅锌冶炼厂土壤污染及重金属富集植物的研究[J]. 生态环境, 2004, 13(2): 156-157.
[13]LI H Y, LI D W, HE C M, et al. Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China[J]. Fungal Ecology, 2012, 5(3): 309-315.
[14]CRAVEN K D. Population studies of native grass-endophyte symbioses provide clues for the roles of host jumps and hybridization in driving their evolution[J]. Molecular Ecology, 2012, 21(11): 2562-2564.
[15]ZHOU L, LI C, ZHANG X, et al. Effects of cold shocked Epichlo infected Festuca sinensis on ergot alkaloid accumulation[J]. Fungal Ecology, 2015, 14: 99-104.
[16]BARNETT H L, HUNTER B B. Illustrated genera of imperfect fungi[M]. 3rd ed.NewYork:Macmillan Publishing Company, 1972.
[17]ELLIS M B. Dematiaceous hyphomycetes[M].UK: International Mycological Institute, 1971.
[18]SUTTON B C.The coelomycetes, fungi imperfecti with pycnidia, acervuli and stromata, Brian C. Sutton[M].England: Commonwealth Mycological Institute, 1980.
[19]LI Y, WANG H, WANG H, et al. Heavy metal pollution in vegetables grown in the vicinity of a multi-metal mining area in Gejiu, China: total concentrations, speciation analysis, and health risk[J]. Environmental Science and Pollution Research, 2014, 21(21): 12569-12582. [20]SHEN M, LIU L, LI D W, et al. The effect of endophytic Peyronellaea from heavy metal-contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation[J]. Fungal Ecology, 2013, 6(6): 539-545.
[21]IRAM S, ZAMAN A, IQBAL Z, et al. Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater[J]. Polish Journalof Environmental Studies, 2013, 22: 691-697.
[22]EZZOUHRI L, CASTRO E, MOYA M, et al. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco[J]. African Journal of MicrobiologyResearch, 2009, 3(2): 35-48.
[23]YUAN Z, ZHANG C, LIN F, et al. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China[J]. Applied and Environmental Microbiology, 2010, 76(5): 1642-1652.
[24]SPELLERBERG I F, FEDOR P J. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’Index[J]. Global Ecology and Biogeography, 2003, 12(3): 177-179.
[25]埃塞林顿, 曲仲湘, 陈昌笃. 环境和植物生态学[M].北京:科学出版社, 1989: 170-276.
[26]鲍恩, 仙舟, 中柱, 等. 元素的环境化学[M].北京:科学出版社, 1986: 71-207.
[27]ARNOLD A E, LUTZONI F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?[J]. Ecology, 2007, 88(3): 541-549.
[28]HASHIZUME Y, FUKUDA K, SAHASHI N. Effects of summer temperature on fungal endophyte assemblages in Japanese beech (Faguscrenata) leaves in pure beech stands[J]. Botany, 2010, 88(3): 266-274. 
[29]NOVAS M V, COLLANTES M, CABRAL D. Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia[J]. FEMS Microbiology Ecology, 2007, 61(1): 164-173.
[30]XING X, GUO S. Fungal endophyte communities in four Rhizophoraceae mangrove species on the south coast of China[J]. Ecological Research, 2011, 26(2): 403-409.
[31]BEZERRA J D P, SANTOS M G S, BARBOSA R N, et al. Fungal endophytes from cactus Cereus jamacaru in Brazilian tropical dry forest: a first study[J]. Symbiosis, 2013, 60(2): 53-63.
[32]周启武. 疯草内生真菌多样性及检测方法研究[D].杨凌:西北农林科技大学, 2013.
[33]周雯娜, 吴远双, 初龙, 等. 云南大围山四种苔藓植物内生真菌多样性[J].微生物学报, 2015, 6: 764-771.
[34]PAULUS B C, KANOWSKI J, GADEK P A, et al. Diversity and distribution of saprobic microfungi in leaf litter of an Australian tropical rainforest[J]. Mycological Research, 2006, 110(12): 1441-1454.
[35]ROSA L H, VIEIRA M L A, SANTIAGO I F, et al. Endophytic fungi community associated with the dicotyledonous plant Colobanthusquitensis (Kunth) Bartl.(Caryophyllaceae) in Antarctica[J]. FEMS Microbiology Ecology, 2010, 73(1): 178-189.
[36]GILLER K E, WITTER E, MCGRATH S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review[J]. Soil Biology and Biochemistry, 1998, 30(10): 1389-1414.
[37]邢奕, 司艳晓, 洪晨, 等. 铁矿区重金属污染对土壤微生物群落变化的影响[J]. 环境科学研究, 2013, 26(11): 1201-1211.
[38]TURNER T R, JAMES E K,POOLE P S. The plant microbiome[J]. Genome Biology, 2013, 14(6): 209-218.
[39]邵士成, 吴少华, 陈有为, 等. 云南元江印楝植物内生真菌的种类组成[J]. 生物多样性, 2008, 16(1): 63-67.
[40]郑毅, 伍斌, 余志祥, 等. 攀枝花苏铁植物内生真菌多样性的初步研究[J]. 生命科学研究, 2013, 17(5): 406-411.
[41]PHAOPONGTHAI J, WIYAKRUTTA S, MEKSURIYEN D, et al. Azole-synergistic anti-candidal activity of altenusin, a biphenyl metabolite of the endophytic fungus Alternaria alternata isolated from Terminalia chebula Retz[J]. Journal of Microbiology, 2013, 51(6): 821-828.
[42]KHAN A R, ULLAH I, WAQAS M, et al. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves[J]. World Journal of Microbiology and Biotechnology, 2015, 31(9): 1461-1466.
[43]LARENA I, TORRES R, DE CAL A, et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum[J]. Biological Control, 2005, 32(2): 305-310.
[44]李扬. 黑附球菌XF1菌株对马铃薯晚疫病的生防作用[D]. 保定:河北农业大学, 2010.
[45]LLED S, RODRIGO S, POBLACIONES M J, et al. Biomass yield, nutritive value and accumulation of minerals in Trifolium subterraneum L. as affected by fungal endophytes[J]. Plant and Soil, 2015, DOI: 10.1007/s11104-015-2596-0.
[46]BABU A G, SHIM J, BANG K S, et al. Trichodermavirens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil[J]. Journal of Environmental Management, 2014, 132: 129-134.
[47]ZAFAR S, AQIL F, AHMAD I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil[J]. Bioresource Technology, 2007, 98(13): 2557-2561.
[48]隆美容. 耐重金属镉丝状真菌的分离、鉴定及特性研究[D]. 阿拉尔: 塔里木大学, 2013.
[49]AN H, LIU Y, ZHAO X, et al. Characterization of cadmium-resistant endophytic fungi from Salix variegate Franch. in Three Gorges Reservoir Region, China[J]. Microbiological Research, 2015, 176: 29-37.
[50]XU R, LI T, CUI H, et al. Diversity and characterization of Cd-tolerant dark septate endophytes (DSEs) associated with the roots of Nepal alder (Alnusnepalensis) in a metal mine tailing of southwest China[J].Applied Soil Ecology, 2015, 93: 11-18.
[51]BABA A, DENIZ O, OZCAN H, et al. Geochemical and radionuclide profile of Tuzla geothermal field, Turkey[J]. Environmental Monitoring and Assessment, 2008, 145(1-3): 361-374.
[52]BRITO E M S, VILLEGAS-NEGRETE N, SOTELO-GONZLEZ I A, et al. Microbial diversity in Los azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers[J]. Extremophiles, 2014, 18(2): 385-398.

相似文献/References:

[1]徐慧敏,郭磊,马瑞娟,等.低温冷藏对桃砧木Nemaguard种子萌发及幼苗生长的影响[J].江苏农业学报,2022,38(01):200.[doi:doi:10.3969/j.issn.1000-4440.2022.01.024]
 XU Hui-min,GUO Lei,MA Rui-juan,et al.Effects of cold storage on seed germination and seedling growth of peach rootstock cultivar Nemaguard[J].,2022,38(01):200.[doi:doi:10.3969/j.issn.1000-4440.2022.01.024]
[2]徐德聪,王宇,沈章军,等.不同生境剑叶金鸡菊瘦果和种子的特性[J].江苏农业学报,2023,(02):530.[doi:doi:10.3969/j.issn.1000-4440.2023.02.027]
 XU De-cong,WANG Yu,SHEN Zhang-jun,et al.Characteristics of achenes and seeds of Coreopsis lanceolata under different habitats[J].,2023,(01):530.[doi:doi:10.3969/j.issn.1000-4440.2023.02.027]

备注/Memo

备注/Memo:
收稿日期:2016-03-30 基金项目:国家自然科学基金项目(31360128、31560566) 作者简介:初龙(1989-),男,山东青岛人,硕士研究生,研究方向为内生真菌多样性及其生态学功能。(Tel)18213461423;(E-mail)769945807@qq.com。李伟为共同第一作者。 通讯作者:李海燕,(Tel)13888082968;(E-mail)13888082968@163.com
更新日期/Last Update: 2017-04-12