[1]覃宝利,韩光明,吴雷明,等.繁殖养殖分离模式和繁殖养殖一体模式下春季稻虾种养系统细菌群落特征[J].江苏农业学报,2025,(07):1388-1397.[doi:doi:10.3969/j.issn.1000-4440.2025.07.015]
 QIN Baoli,HAN Guangming,WU Leiming,et al.Characteristics of bacterial communities in crayfish farming systems under the separation and integration of breeding and rearing modes[J].,2025,(07):1388-1397.[doi:doi:10.3969/j.issn.1000-4440.2025.07.015]
点击复制

繁殖养殖分离模式和繁殖养殖一体模式下春季稻虾种养系统细菌群落特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1388-1397
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2025-07-31

文章信息/Info

Title:
Characteristics of bacterial communities in crayfish farming systems under the separation and integration of breeding and rearing modes
作者:
覃宝利韩光明吴雷明马林杰徐荣杨婷张诚信毕建花王守红朱凌宇张家宏寇祥明
(江苏里下河地区农业科学研究所,江苏扬州225007)
Author(s):
QIN BaoliHAN GuangmingWU LeimingMA LinjieXU RongYANG TingZHANG ChengxinBI JianhuaWANG ShouhongZHU LingyuZHANG JiahongKOU Xiangming
(Institute of Agricultural Sciences of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China)
关键词:
克氏原螯虾养殖模式细菌群落水质因子
Keywords:
Procambarus clarkiicultivation modesbacterial communitywater quality factor
分类号:
S966.12
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.015
文献标志码:
A
摘要:
为了明确繁殖养殖一体模式和繁殖养殖分离模式下春季克氏原螯虾养殖系统细菌群落变化及其影响因子,本研究利用16S rRNA基因测序对成熟期克氏原螯虾养殖系统水体、底泥和虾肠道细菌群落组成和多样性进行分析,阐明两种养殖模式下养殖系统细菌群落特征及其与水质因子关系的差异。结果表明:繁殖养殖一体模式水体为中度富营养化水平,繁殖养殖分离模式水体为中营养水平。水体、底泥和虾肠道细菌群落多样性两种模式间无显著差异,群落组成有显著差异。与繁殖养殖一体模式相比,繁殖养殖分离模式显著提高了水体变形菌门细菌和底泥放线菌门细菌的相对丰度,降低了水体蓝细菌门细菌和放线菌门细菌的相对丰度,减少了肠道中潜在致病菌鲁氏不动杆菌的相对丰度,降低了克氏原螯虾肠道遭受致病菌感染的风险。总氮(TN)含量、磷酸盐(PO3-4-P)含量,叶绿素a含量和高锰酸盐指数(CODMn)是繁殖养殖一体模式水体、肠道菌群组成的主要影响因子;透明度,水温和水体溶解氧(DO)含量是繁殖养殖分离模式水体、肠道菌群组成的主要影响因子。本研究结果为克氏原螯虾养殖水质调控、疾病预防和稻虾种养绿色可持续发展提供了理论支撑。
Abstract:
To clarify the changes in bacterial communities and their influencing factors in the spring rice-crayfish co-culture system (RCCS) under integrated and isolated breeding modes, 16S rRNA gene sequencing was used to investigate the composition and diversity of bacterial communities in the pond water, sediment and gut of crayfish at mature stage. The bacterial community characteristics and their relationships with water quality factors were compared and studied under the separation and integration of breeding and rearing modes. The results showed that the water under the integrated mode reached a moderately eutrophic level, while the water under the separated mode maintained a mesotrophic state. Bacterial community diversity in water, sediment and crayfish gut samples showed no significant differences between the two modes, but community composition exhibited significant divergence. Compared to the integrated mode, the separated mode significantly increased the relative abundance of Proteobacteria in water and Actinobacteria in sediment and decreased the relative abundance of Cyanobacteria and Actinobacteria in water, reduced the relative abundance of potential pathogen Acinetobacter lwoffii in crayfish gut, and lowered the risk of pathogenic bacterial infection in crayfish gut. In the integrated breeding-cultivation mode, total nitrogen (TN) content, orthophosphate (PO3-4-P) content, chlorophyll a content, and permanganate index (CODMn) were identified as the primary factors influencing bacterial community composition in both water and crayfish gut microbiota. In the separated breeding-cultivation mode, water transparency, temperature, and dissolved oxygen (DO) content were identified as the primary factors influencing bacterial community composition in aquatic environments and intestinal microbiota. This study provides a theoretical foundation for optimizing water quality management, preventing diseases, and advancing green sustainable development in rice-crayfish co-culture systems.

参考文献/References:

[1]MANFRIN C, TOM M, DE MORO G, et al. The eyestalk transcriptome of red swamp crayfish Procambarus clarkii[J]. Gene,2015,557(1):28-34.
[2]CHU X H, YANG T T, LIU Y, et al. Transcriptome analysis of differential expressed genes in hepatopancreas of Procambarus clarkii challenged with peptidoglycan[J]. Fish & Shellfish Immunology,2019,86:311-318.
[3]于秀娟,郝向举,杨霖坤,等. 中国小龙虾产业发展报告(2023)[J]. 中国水产,2023,572(7):26-31.
[4]SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports,2017,7(1):2856.
[5]WU Z B, ZHANG Q Q, ZHANG T L, et al. Association of the microbiota dysbiosis in the hepatopancreas of farmed crayfish (Procambarus clarkii) with disease outbreaks[J]. Aquaculture,2021,536:736492.
[6]XU L L, YUAN J F, CHEN X X, et al. Screening of intestinal probiotics and the effects of feeding probiotics on the digestive enzyme activity,immune,intestinal flora and WSSV resistance of Procambarus clarkii[J]. Aquaculture,2021,540:736748.
[7]CHEN H L, WANG Y J, ZHANG J, et al. Intestinal microbiota in white spot syndrome virus infected red swamp crayfish (Procambarus clarkii) at different health statuses[J]. Aquaculture,2021,542:736826.
[8]白志毅,冯建彬,崔文涛,等. 繁养分离稻虾种养模式的优势及实践[J]. 中国水产,2020(12):81-83.
[9]RAJEEV R, ADITHYA K K, KIRAN G S, et al. Healthy microbiome:a key to successful and sustainable shrimp aquaculture[J]. Reviews in Aquaculture,2021,13(1):238-258.
[10]SUN F L, WANG Y S, WANG C Z, et al. Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment[J]. Aquaculture,2019,507:196-202.
[11]ALFIANSAH Y R, HASSENRCK C, KUNZMANN A, et al. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities[J]. Frontiers in Microbiology,2018,9:2457.
[12]NIE Z J, ZHENG Z W, ZHU H J, et al. Effects of submerged macrophytes (Elodea nuttallii) on water quality and microbial communities of largemouth bass (Micropterus salmoides) ponds[J]. Frontiers in Microbiology,2023,13:1050699.
[13]WANG J L, ZHOU W C, HUANG S, et al. Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters[J]. Journal of Cleaner Production,2023,417:138068.
[14]FUNGE-SMITH S J, BRIGGS M R P. Nutrient budgets in intensive shrimp ponds:implications for sustainability[J]. Aquaculture,1998,164(1/2/3/4):117-133.
[15]SAHU B C, ADHIKARI S, DEY L. Carbon,nitrogen and phosphorus budget in shrimp (Penaeus monodon) culture ponds in eastern India[J]. Aquaculture International,2013,21(2):453-466.
[16]SMITH D M, BURFORD M A, TABRETT S J, et al. The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon)[J]. Aquaculture,2002,207(1/2):125-136.
[17]AVNIMELECH Y, KOCHVA M, DIAB S. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio[J]. Israeli Journal of Aquaculture-Bamidgeh,1994,46(3):119-131.
[18]MARTIN J M, VERAN Y, GUELORGET O, et al. Shrimp rearing:stocking density,growth,impact on sediment,waste output and their relationships studied through the nitrogen budget in rearing ponds[J]. Aquaculture,1998,164(1/2/3/4):135-149.
[19]丁兰,徐胜南,罗金萍,等. 对虾肠道菌群功能、影响因素与应用研究进展[J]. 海洋渔业,2023,45(2):248-256.
[20]TANG J Y, DAI Y X, LI Y M, et al. Can application of commercial microbial products improve fish growth and water quality in freshwater polyculture?[J]. North American Journal of Aquaculture,2016,78(2):154-160.
[21]金相灿. 中国湖泊环境[M]. 北京:海洋出版社,1995.
[22]JIANG X, MA H, ZHAO Q L, et al. Bacterial communities in paddy soil and ditch sediment under rice-crab co-culture system[J]. AMB Express,2021,11(1):163.
[23]HERLAMBANG A, MURWANTOKO M, ISTIQOMAH I. Dynamic change in bacterial communities in the integrated rice-fish farming system in Sleman,Yogyakarta,Indonesia[J]. Aquaculture Research,2021,52(11):5566-5578.
[24]FAN L M, BARRY K, HU G D, et al. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations[J]. World Journal of Microbiology & Biotechnology,2017,33(1):1.
[25]秦伟. 不同放养密度和水草覆盖度下底埋培养基的克氏原螯虾池塘底泥微生物群落特征[D]. 上海:上海海洋大学,2015.
[26]JIANG T T, SUN S N, CHEN Y N, et al. Microbial diversity characteristics and the influence of environmental factors in a large drinking-water source[J]. Science of the Total Environment,2021,769:144698.
[27]张诗雨,谢梦琪,许荔立,等. 壳寡糖对克氏原螯虾消化酶活性、肠道菌群结构、血清非特异性免疫指标及抗病力的影响[J]. 动物营养学报,2020,32(12):5864-5874.
[28]MAHLEN S D. Serratia infections:from military experiments to current practice[J]. Clinical Microbiology Reviews,2011,24(4):755-791.
[29]FERNNDEZ-BRAVO A, FIGUERAS M J. An update on the genus Aeromonas:taxonomy,epidemiology,and pathogenicity[J]. Microorganisms,2020,8(1):129.
[30]ZHANG Z T, LIU J L, JIN X X, et al. Developmental,dietary,and geographical impacts on gut microbiota of red swamp crayfish (Procambarus clarkii)[J]. Microorganisms,2020,8(9):1376.
[31]ZHANG J X, YANG Y Y, ZHAO L, et al. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes[J]. Applied Microbiology and Biotechnology,2015,99(7):3291-3302.
[32]UCHIDA Y, MOGI H, HAMAMOTO T, et al. Changes in denitrification potentials and riverbank soil bacterial structures along Shibetsu River,Japan[J]. Applied and Environmental Soil Science,2018,2018:2530946.
[33]陈梦齐,刘紫丹,戴文芳,等. 象山港电厂温排水增温对浮游细菌群落空间分布的影响[J]. 生态学报,2016,36(20):6574-6582.
[34]CHAO C X, WANG L G, LI Y, et al. Response of sediment and water microbial communities to submerged vegetations restoration in a shallow eutrophic lake[J]. Science of the Total Environment,2021,801:149701.
[35]VAN DER GUCHT K, VANDEKERCKHOVE T, VLOEMANS N, et al. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure[J]. FEMS Microbiology Ecology,2005,53(2):205-220.
[36]ZHANG M J, DOU Y Q, XIAO Z D, et al. Identification of an Acinetobacter lwoffii strain isolated from diseased hybrid sturgeon (Acipenser baerii♀ × Acipenser schrenckii♂)[J]. Aquaculture,2023,574:739649.
[37]CAO S Q, GENG Y, YU Z H, et al. Acinetobacter lwoffii,an emerging pathogen for fish in Schizothorax genus in China[J]. Transboundary and Emerging Diseases,2018,65(6):1816-1822.
[38]LI N, FAN X Y, LI X. Unveiling the characteristics of free-living and particle-associated antibiotic resistance genes associated with bacterial communities along different processes in a full-scale drinking water treatment plant[J]. Journal of Hazardous Materials,2024,476:135194.
[39]王树茂,王秀华,朱娜,等. 江苏高邮罗氏沼虾池塘养殖可培养微生物组成调查[J]. 中国水产科学,2022,29(6):890-902.
[40]ZHANG Q Q, JIAN S L, LI K M, et al. Community structure of bacterioplankton and its relationship with environmental factors in the upper reaches of the Heihe River in Qinghai Plateau[J]. Environmental Microbiology,2021,23(2):1210-1221.
[41]曹煜成,文国樑,李卓佳,等. 池塘水体微生物群落代谢活性的动态变化及其与水质的关系[J]. 安全与环境学报,2015,15(1):280-284.
[42]CHEN C Z, LI P, LIU L, et al. Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture:a review[J]. Environmental Research,2022,214:114202.
[43]金渝钦,陈曦,孟顺龙,等. 典型池塘养殖模式的氮磷收支研究进展[J]. 中国农学通报,2023,39(36):140-147.
[44]严瑶仙,梁柱源,朱泉剑,等. 大亚湾南澳海域浮游细菌丰度对营养盐添加的响应[J]. 浙江万里学院学报,2014,27(1):1-9.
[45]VAN MOOY B A S, ROCAP G, FREDRICKS H F, et al. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(23):8607-8612.
[46]李安艳,黄先飞,田源斌,等. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报,2023,47(8):1171-1181.
[47]PORUBSKY W P, VELASQUEZ L E, JOYE S B. Nutrient-replete benthic microalgae as a source of dissolved organic carbon to coastal waters[J]. Estuaries and Coasts,2008,31(5):860-876.
[48]董学兴,吕林兰,赵卫红,等. 不同养殖模式下罗氏沼虾肠道菌群结构特征及其与环境因子的关系[J]. 上海海洋大学学报,2019,28(4):501-510.
[49]HUANG X L, LI M H, HUANG Y, et al. Microbiome analysis reveals microecological advantages of emerging ditchless rice-crayfish co-culture mode[J]. Frontiers in Microbiology,2022,13:892026.
[50]倪琳琳. 红鳍东方鲀工厂化养殖尾水中活性磷酸盐的去除研究[D]. 大连:大连海洋大学,2024.
[51]国家环境保护总局水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 北京:中国环境科学出版社,2002.
[52]杨婉玲,赖子尼,刘乾甫,等. 不同养殖品种池塘化学耗氧量(CODMn)变化趋势及环境影响因素[J]. 广东农业科学,2014,41(8):161-165.

相似文献/References:

[1]刘国锋,徐跑,吴霆,等.中国水产养殖环境氮磷污染现状及未来发展思路[J].江苏农业学报,2018,(01):225.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
 LIU Guo-feng,XU Pao,WU Ting,et al.Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy[J].,2018,(07):225.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
[2]韩士群,周庆,姚东瑞,等.水产养殖模式对池塘水环境和环境负荷量的影响[J].江苏农业学报,2018,(03):578.[doi:doi:10.3969/j.issn.1000-4440.2018.03.014]
 HAN Shi-qun,ZHOU Qing,YAO Dong-rui,et al.Effects of aquaculture patterns on water environment of fish pond and environmental load[J].,2018,(07):578.[doi:doi:10.3969/j.issn.1000-4440.2018.03.014]
[3]王飞飞,王夏雯,金倩,等.温度对克氏原螯虾肠道菌群结构的影响[J].江苏农业学报,2022,38(01):157.[doi:doi:10.3969/j.issn.1000-4440.2022.01.019]
 WANG Fei-fei,WANG Xia-wen,JIN Qian,et al.Effects of temperature on gut microbiota structure of Procambarus clarkii[J].,2022,38(07):157.[doi:doi:10.3969/j.issn.1000-4440.2022.01.019]
[4]章梦丹,张俊杰,黄鸿兵,等.不同低温循环水暂养时间对克氏原螯虾肌肉品质和健康状况的影响[J].江苏农业学报,2024,(05):905.[doi:doi:10.3969/j.issn.1000-4440.2024.05.015]
 ZHANG Mengdan,ZHANG Junjie,HUANG Hongbing,et al.Effects of different low-temperature circulating water culture durations on muscle quality and health status of Procambarus clarkii[J].,2024,(07):905.[doi:doi:10.3969/j.issn.1000-4440.2024.05.015]
[5]孙梦玲,薛晖,徐宇,等.克氏原螯虾(Procambarus clarkii)形态性状与净肉重及出肉率的相关性[J].江苏农业学报,2025,(01):126.[doi:doi:10.3969/j.issn.1000-4440.2025.01.015]
 SUN Mengling,XUE Hui,XU Yu,et al.Correlation between the morphological traits and net meat weight, meat rate of Procambarus clarkii[J].,2025,(07):126.[doi:doi:10.3969/j.issn.1000-4440.2025.01.015]
[6]王丹,许荟,徐宇,等.不同种养模式稻田水体中浮游生物群落变化[J].江苏农业学报,2025,(04):733.[doi:doi:10.3969/j.issn.1000-4440.2025.04.012]
 WANG Dan,XU Hui,XU Yu,et al.Changes of plankton communities in paddy water under different rice-crayfish farming systems[J].,2025,(07):733.[doi:doi:10.3969/j.issn.1000-4440.2025.04.012]

备注/Memo

备注/Memo:
收稿日期:2024-11-02基金项目:江苏省科技计划项目(BN2023054);江苏现代农业(克氏原螯虾)产业技术体系项目[JATS(2023)241];扬州市科技计划项目(YZ2023046、YZ2023244);江苏里下河地区农科所克氏原螯虾综合种养关键技术创新与应用项目[SJ(22)205]作者简介:覃宝利(1986-),女,河南鹤壁人,硕士,助理研究员,主要从事稻渔综合种养技术研究。(E-mail)20141602@jaas.ac.cn通讯作者:寇祥明,(E-mail)kouxiangmi
更新日期/Last Update: 2025-08-19