参考文献/References:
[1]张岩,魏建和,金钺. 桔梗三大主产区栽培技术调查[J]. 中国现代中药,2020,22(5):720-728.
[2]SHIN C Y, LEE W J, LEE E B, et al. Platycodin D and D3 increase airway mucin release in vivo and in vitro in rats and hamsters[J]. Planta Medica,2002,68(3):221-225.
[3]李盈,王举涛,桂双英,等. 桔梗的化学成分及药理作用研究进展[J]. 食品与药品,2016,18(1):4-10.
[4]张燕,李阳,李倩,等. 桔梗种质资源研究新进展[J]. 中国野生植物资源,2017,36(3):53-56,82.
[5]黄艺,钟凌云,钟国跃,等. 桔梗不同炮制方法工艺优选及其镇咳作用比较[J]. 江西中医药大学学报,2020,32(4):70-73.
[6]张金文,贾维忠,任续伟. 移栽密度对桔梗产量及品质的影响[J]. 乡村科技,2022,13(12):90-92.
[7]柳玥雯. 桔梗生长、产量及品质的影响因素[J]. 当代农机,2021(10):52-54.
[8]李松儒. 种植方式与施肥对叶用桔梗生长及品质的影响[D]. 哈尔滨:东北农业大学,2020.
[9]廖兴国,郭圣茂,陈兰兰,等. 不同施肥处理对桔梗生长特性和药材产量的影响[J]. 经济林研究,2014,32(2):110-113.
[10]王岩,林海. 浅谈化肥危害及采取的有效措施[J]. 丹东师专学报,2002(增刊1):31-32.
[11]HUANG S W, WANG L, LIU L M, et al. Nanotechnology in agriculture,livestock,and aquaculture in China. A review[J]. Agronomy for Sustainable Development,2015,35(2):369-400.
[12]杜俊杰,李娜,吴建虎. 不同纳米材料对小麦种子萌发的影响[J]. 安徽农业科学,2018,46(13):38-40,124.
[13]杜红霞,肖波,王丽,等. 两种金属纳米材料对黄菖蒲生长及生理特性的影响[J]. 现代园艺,2023,46(1):42-44.
[14]路轲,宋正国. 喷施不同纳米材料对水稻幼苗磷含量的影响[J]. 农业环境科学学报,2020,39(1):28-36.
[15]韩云华,米素娟,石晓琪,等. 纳米粒子的植物促生效应[J]. 草业学报,2022,31(11):204-213.
[16]路轲. 喷施不同纳米材料对水稻幼苗生长和磷吸收的影响[D]. 北京:中国农业科学院,2020.
[17]ADISA I O, PULLAGURALA V L R, PERALTA-VIDEA J R, et al. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action[J]. Environmental Science-Nano,2019,6(7):2002-2030.
[18]宁书菊,林文津,韩娜,等. 目前桔梗生产及研究需要关注的几个关键性问题[J]. 中国种业,2017,269(8):23-25.
[19]ROCIO T, DIZ V E, LAGORIO M G. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts[J]. Photochemical Photobiological Sciences:Official Journal of the European Photochemistry Association and the European Society for Photobiology,2018,17(4):505-516.
[20]ARORA S, SHARMA P, KUMAR S, et al. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea[J]. Plant Growth Regulation:An International Journal on Natural and Synthetic Regulators,2012,66(3):303-310.
[21]KUMAR V, GULERIA P, KUMAR V, et al. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana[J]. Science of the Total Environment,2013,461-462:462-468.
[22]崔婧,胡林颖,苏茹,等. 不同营养液浓度对九里香幼苗生长的影响[J]. 安徽农学通报,2022,28(2):88-91.
[23]COHEN J. A power primer[J]. Tutorials in Quantitative Methods for Psychology,1992,3(2):79-79.
[24]韩云华,米素娟,石晓琪,等. 纳米粒子的植物促生效应[J]. 草业学报,2022,31(11):204-213.
[25]JOSHI A, NAYYAR H, DHARAMVIR K, et al. Detection of gold nanoparticles signal inside wheat (Triticum aestivum L.) and oats (Avena sativa) seedlings[C]// AIP. International Conference on Condensed Matter and Applied Physic. New York:AIP Publishing, 2018.
[26]AVELLAN A, YUN J, ZHANG Y L, et al. Nanoparticle size and coating chemistry control foliar uptake pathways,translocation and leaf-to-rhizosphere transport in wheat[J]. ACS Nano,2019,13(5):5291-5305.
[27]刘大同,荆彦平,陈晶晶,等. 水稻的侧根发育及其影响因素[J]. 作物学报,2014,40(8):1403-1411.
[28]FUKAKI H, OKUSHIMA Y, TASAKA M. Auxin-mediated lateral root formation in higher plants[J]. International Review of Cytology,2007,256:111-137.
[29]LJUNG K, HULL A K, CELENZA J, et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots[J]. Plant Cell,2005,17(4):1090-1104.
[30]SABO-ATTWOOD T, UNRINE J M, STONE J W, et al. Uptake,distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings[J]. Nanotoxicology,2012,6(4):353-360.
[31]CAI S H, LI T, ZHOU G X, et al. Gas exchange characteristics in the mangrove associate Hibiscus tiliaceus [J]. Guihaia,2016,36(4):397-404.
[32]WANG Y, TONG Y F, CHU H L, et al. Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale[J]. Biologia,2017,72(7):735-744.
[33]SHAO G Q, LI Z J, NING T Y, et al. Responses of photo-synthesis, chlorophyll fluorescence, and grain yield of maize to controlled release urea and irrigation after anthesis[J]. Journal of Plant Nutrition and Soil Science,2013,176:595-602.
[34]TSAI Y C, CHEN K C, CHENG T S, et al. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency[J]. BMC Plant Biology,2019,19(1):403-420.
[35]张雪洁,周梦,赵世宇,等. 纳米硒对草莓叶片光合特性及叶绿素荧光参数的影响[J]. 江苏农业科学,2022,50(16):167-173..
[36]SERVIN A D, MORALES M I, CASTILLO-MICHEL H, et al. Synchrotron verification of TiO2 accumulation in cucumber fruit:a possible pathway of TiO2 nanoparticle transfer from soil into the food chain[J]. Environmental Science & Technology,2013,47(20):11592-11598.
[37]ABBASIFAR A, SHAHRABADI F, VALIZADEHKAJI B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant[J]. Journal of Plant Nutrition,2020,43(8):1104-1118.
[38]XIAO L, GUO H Y, WANG S X, et al. Carbon dots alleviate the toxicity of cadmium ions (Cd2+) toward wheat seedlings[J]. Environmental Science-Nano,2019,6(5):1493-1506.
[39]CHEN W, YAO X Q, CAI K Z, et al. Silicon alleviates drought stress of rice plants by improving plant water status,photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Rresearch,2011,142(1):67-76.
[40]陈绕生,薛林宝. 纳米硒、铜对干旱胁迫下番茄生长、光合特性及产量的影响[J]. 江苏农业科学,2022,50(12):127-134.
[41]吴焕焕,张虹,任志红,等. 叶面喷硒对茶树叶片光合特性及产量的影响[J]. 山东农业科学,2021,53(6):64-68.
[42]徐金涛,庞敏,马新,等. CO2加富对塔玛亚历山大藻叶绿素荧光参数及产量的影响[J]. 海洋与湖沼,2016,47(3):557-563.
[43]赵玉文, 林玲, 南吉斌, 等. 几种模型下砂生槐叶绿素荧光-快速光响应曲线(RLCS)拟合的比较[J]. 北方园艺,2019(9):83-89.
[44]CHEN Z Y, PENG Z S, YANG J, et al. A mathematical model for describing light-response curves in Nicotiana tabacum L.[J]. Photosynthetica,2011,49(3):467-471.