[1]薛园园,李嘉欣,吴甜甜,等.纳米金对桔梗生长和叶绿素荧光特性的影响[J].江苏农业学报,2025,(06):1223-1232.[doi:doi:10.3969/j.issn.1000-4440.2025.06.019]
 XUE Yuanyuan,LI Jiaxin,WU Tiantian,et al.Effects of gold nanoparticles on the growth and chlorophyll fluorescence characteristics of Platycodon grandiflorus[J].,2025,(06):1223-1232.[doi:doi:10.3969/j.issn.1000-4440.2025.06.019]
点击复制

纳米金对桔梗生长和叶绿素荧光特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1223-1232
栏目:
园艺
出版日期:
2025-06-30

文章信息/Info

Title:
Effects of gold nanoparticles on the growth and chlorophyll fluorescence characteristics of Platycodon grandiflorus
作者:
薛园园13李嘉欣2吴甜甜3夏可儿3李双晴3程颖3陈延松3
(1.安徽大学生命科学学院,安徽合肥230601;2.安徽大学资源与环境工程学院,安徽合肥230601;3.合肥师范学院生物与食品工程学院,安徽合肥230061)
Author(s):
XUE Yuanyuan13LI Jiaxin2WU Tiantian3XIA Keer3LI Shuangqing3CHENG Ying3CHEN Yansong3
(1.School of Life Sciences, Anhui University, Hefei 230601, China;2.School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;3.School of Biology and Food Engineering, Hefei Normal University, Hefei 230061, China)
关键词:
桔梗纳米金叶绿素荧光参数快速光响应曲线
Keywords:
Platycodon grandiflorusgold nanoparticleschlorophyll fluorescence parametersrapid light response curve
分类号:
Q949.783.2
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.019
文献标志码:
A
摘要:
为探究纳米金对桔梗(Platycodon grandiflorus)生长、叶绿素荧光特性的影响,本研究以二年生桔梗为试验材料,对桔梗叶片喷施质量浓度为8 mg/L、16 mg/L、32 mg/L的纳米金(粒径约35 nm)溶液,测量桔梗生长指标、叶绿素荧光参数。结果表明,喷施纳米金3次时,8 mg/L纳米金处理桔梗光化学猝灭系数(qL)显著高于对照(P<0.05),8 mg/L和16 mg/L纳米金处理桔梗最大电子传递速率(ETRmax)显著高于对照(P<0.05)。喷施纳米金4次时,32 mg/L纳米金处理桔梗光系统Ⅱ实际量子产量[Y(Ⅱ)]、电子传递速率(ETR)、光化学猝灭系数(qL)显著低于对照(P<0.05),调节性能量耗散的量子产量[Y(NPQ)]、叶绿素相对含量(SPAD)、光响应曲线的初始斜率显著高于对照(P<0.05)。喷施纳米金4次,与对照相比,8 mg/L纳米金处理桔梗单根干重和侧根数分别显著提高了114.29%、115.47%(P<0.05);16 mg/L纳米金处理桔梗单根干重和主根长分别显著提高了68.57%、28.30%(P<0.05)。纳米金喷施次数对桔梗光系统Ⅱ实际量子产量[Y(Ⅱ)]、电子传递速率(ETR)、光化学猝灭系数(qL)、调节性能量耗散的量子产量[Y(NPQ)]、光系统Ⅱ最大光化学量子产量[Fv/Fm]、最大电子传递速率(ETRmax)、SPAD值影响极显著(P<0.01)。纳米金质量浓度对桔梗光化学猝灭系数(qL)、最大电子传递速率(ETRmax)影响极显著(P<0.01),纳米金喷施次数和纳米金质量浓度的联合作用对桔梗光化学猝灭系数(qL)的影响极显著(P<0.01)。研究结果表明适宜质量浓度的纳米金可提高桔梗叶片光合能力,促进植株生长以及侧根发生,显著提高桔梗根部生物量。回归分析结果表明,当纳米金质量浓度为12.98 mg/L时,桔梗根部生物量达到最大值,单根干重为0.65 g。本研究结果可为纳米金叶面肥的研发和应用提供理论支持。
Abstract:
To investigate the effects of gold nanoparticles (AuNPs) on the growth and chlorophyll fluorescence characteristics of Platycodon grandiflorus, this study used two-year-old Platycodon grandiflorus as the experimental material. The leaves of Platycodon grandiflorus were sprayed with AuNPs (with a particle size of 35 nm) solutions at mass concentrations of 8 mg/L, 16 mg/L, and 32 mg/L. The growth indices and chlorophyll fluorescence parameters of Platycodon grandiflorus were measured. The results showed that after three applications of AuNPs, the photochemical quenching coefficient (qL) of Platycodon grandiflorus treated with 8 mg/L AuNPs was significantly higher than that of the control (P<0.05), and the maximum electron transport rates (ETRmax) of Platycodon grandiflorus treated with 8 mg/L and 16 mg/L AuNPs were significantly higher than that of the control (P<0.05). After four applications of AuNPs, the actual quantum yield of photosystem Ⅱ [Y(Ⅱ)], electron transport rate (ETR) and photochemical quenching coefficient (qL) of Platycodon grandiflorus treated with 32 mg/L AuNPs were significantly lower than those of the control (P<0.05), while the quantum yield of regulated energy dissipation [Y(NPQ)], the relative chlorophyll content (SPAD) and the initial slope of the light response curve (α) were significantly higher than those of the control (P<0.05). After four applications of AuNPs, compared with the control, the single-root dry weight and lateral root number of Platycodon grandiflorus treated with 8 mg/L AuNPs increased significantly by 114.29% and 115.47%, respectively (P<0.05); the single-root dry weight and main root length of Platycodon grandiflorus treated with 16 mg/L AuNPs increased significantly by 68.57% and 28.30%, respectively (P<0.05). The number of AuNPs applications had an extremely significant effect on the the actual quantum yield of photosystem Ⅱ[Y(Ⅱ)], electron transport rate (ETR), photochemical quenching coefficient (qL), quantum yield of regulated energy dissipation [Y(NPQ)], the maximum photochemical quantum yield of photosystemⅡ(Fv/Fm), the maximum electron transport rate (ETRmax) and SPAD of Platycodon grandiflorus (P<0.01). The mass concentration of AuNPs had extremely significant effects on the photochemical quenching coefficient (qL) and the maximum electron transport rate (ETRmax) of Platycodon grandiflorus (P<0.01). The combined effect of the number of AuNPs applications and the mass concentration of AuNPs on the photochemical quenching coefficient (qL) of Platycodon grandiflorus was extremely significant (P<0.01). These results indicate that an appropriate mass concentration of AuNPs can enhance the photosynthetic capacity of Platycodon grandiflorus leaves, promote plant growth and lateral root development, and significantly increase the root biomass of Platycodon grandiflorus. Regression analysis showed that the root biomass of Platycodon grandiflorus reached its maximum value when the mass concentration of AuNPs was 12.98 mg/L, with a single-root dry weight of 0.65 g. This study provides theoretical support for the development and application of gold nanoparticle foliar fertilizers.

参考文献/References:

[1]张岩,魏建和,金钺. 桔梗三大主产区栽培技术调查[J]. 中国现代中药,2020,22(5):720-728.
[2]SHIN C Y, LEE W J, LEE E B, et al. Platycodin D and D3 increase airway mucin release in vivo and in vitro in rats and hamsters[J]. Planta Medica,2002,68(3):221-225.
[3]李盈,王举涛,桂双英,等. 桔梗的化学成分及药理作用研究进展[J]. 食品与药品,2016,18(1):4-10.
[4]张燕,李阳,李倩,等. 桔梗种质资源研究新进展[J]. 中国野生植物资源,2017,36(3):53-56,82.
[5]黄艺,钟凌云,钟国跃,等. 桔梗不同炮制方法工艺优选及其镇咳作用比较[J]. 江西中医药大学学报,2020,32(4):70-73.
[6]张金文,贾维忠,任续伟. 移栽密度对桔梗产量及品质的影响[J]. 乡村科技,2022,13(12):90-92.
[7]柳玥雯. 桔梗生长、产量及品质的影响因素[J]. 当代农机,2021(10):52-54.
[8]李松儒. 种植方式与施肥对叶用桔梗生长及品质的影响[D]. 哈尔滨:东北农业大学,2020.
[9]廖兴国,郭圣茂,陈兰兰,等. 不同施肥处理对桔梗生长特性和药材产量的影响[J]. 经济林研究,2014,32(2):110-113.
[10]王岩,林海. 浅谈化肥危害及采取的有效措施[J]. 丹东师专学报,2002(增刊1):31-32.
[11]HUANG S W, WANG L, LIU L M, et al. Nanotechnology in agriculture,livestock,and aquaculture in China. A review[J]. Agronomy for Sustainable Development,2015,35(2):369-400.
[12]杜俊杰,李娜,吴建虎. 不同纳米材料对小麦种子萌发的影响[J]. 安徽农业科学,2018,46(13):38-40,124.
[13]杜红霞,肖波,王丽,等. 两种金属纳米材料对黄菖蒲生长及生理特性的影响[J]. 现代园艺,2023,46(1):42-44.
[14]路轲,宋正国. 喷施不同纳米材料对水稻幼苗磷含量的影响[J]. 农业环境科学学报,2020,39(1):28-36.
[15]韩云华,米素娟,石晓琪,等. 纳米粒子的植物促生效应[J]. 草业学报,2022,31(11):204-213.
[16]路轲. 喷施不同纳米材料对水稻幼苗生长和磷吸收的影响[D]. 北京:中国农业科学院,2020.
[17]ADISA I O, PULLAGURALA V L R, PERALTA-VIDEA J R, et al. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action[J]. Environmental Science-Nano,2019,6(7):2002-2030.
[18]宁书菊,林文津,韩娜,等. 目前桔梗生产及研究需要关注的几个关键性问题[J]. 中国种业,2017,269(8):23-25.
[19]ROCIO T, DIZ V E, LAGORIO M G. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts[J]. Photochemical Photobiological Sciences:Official Journal of the European Photochemistry Association and the European Society for Photobiology,2018,17(4):505-516.
[20]ARORA S, SHARMA P, KUMAR S, et al. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea[J]. Plant Growth Regulation:An International Journal on Natural and Synthetic Regulators,2012,66(3):303-310.
[21]KUMAR V, GULERIA P, KUMAR V, et al. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana[J]. Science of the Total Environment,2013,461-462:462-468.
[22]崔婧,胡林颖,苏茹,等. 不同营养液浓度对九里香幼苗生长的影响[J]. 安徽农学通报,2022,28(2):88-91.
[23]COHEN J. A power primer[J]. Tutorials in Quantitative Methods for Psychology,1992,3(2):79-79.
[24]韩云华,米素娟,石晓琪,等. 纳米粒子的植物促生效应[J]. 草业学报,2022,31(11):204-213.
[25]JOSHI A, NAYYAR H, DHARAMVIR K, et al. Detection of gold nanoparticles signal inside wheat (Triticum aestivum L.) and oats (Avena sativa) seedlings[C]// AIP. International Conference on Condensed Matter and Applied Physic. New York:AIP Publishing, 2018.
[26]AVELLAN A, YUN J, ZHANG Y L, et al. Nanoparticle size and coating chemistry control foliar uptake pathways,translocation and leaf-to-rhizosphere transport in wheat[J]. ACS Nano,2019,13(5):5291-5305.
[27]刘大同,荆彦平,陈晶晶,等. 水稻的侧根发育及其影响因素[J]. 作物学报,2014,40(8):1403-1411.
[28]FUKAKI H, OKUSHIMA Y, TASAKA M. Auxin-mediated lateral root formation in higher plants[J]. International Review of Cytology,2007,256:111-137.
[29]LJUNG K, HULL A K, CELENZA J, et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots[J]. Plant Cell,2005,17(4):1090-1104.
[30]SABO-ATTWOOD T, UNRINE J M, STONE J W, et al. Uptake,distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings[J]. Nanotoxicology,2012,6(4):353-360.
[31]CAI S H, LI T, ZHOU G X, et al. Gas exchange characteristics in the mangrove associate Hibiscus tiliaceus [J]. Guihaia,2016,36(4):397-404.
[32]WANG Y, TONG Y F, CHU H L, et al. Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale[J]. Biologia,2017,72(7):735-744.
[33]SHAO G Q, LI Z J, NING T Y, et al. Responses of photo-synthesis, chlorophyll fluorescence, and grain yield of maize to controlled release urea and irrigation after anthesis[J]. Journal of Plant Nutrition and Soil Science,2013,176:595-602.
[34]TSAI Y C, CHEN K C, CHENG T S, et al. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency[J]. BMC Plant Biology,2019,19(1):403-420.
[35]张雪洁,周梦,赵世宇,等. 纳米硒对草莓叶片光合特性及叶绿素荧光参数的影响[J]. 江苏农业科学,2022,50(16):167-173..
[36]SERVIN A D, MORALES M I, CASTILLO-MICHEL H, et al. Synchrotron verification of TiO2 accumulation in cucumber fruit:a possible pathway of TiO2 nanoparticle transfer from soil into the food chain[J]. Environmental Science & Technology,2013,47(20):11592-11598.
[37]ABBASIFAR A, SHAHRABADI F, VALIZADEHKAJI B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant[J]. Journal of Plant Nutrition,2020,43(8):1104-1118.
[38]XIAO L, GUO H Y, WANG S X, et al. Carbon dots alleviate the toxicity of cadmium ions (Cd2+) toward wheat seedlings[J]. Environmental Science-Nano,2019,6(5):1493-1506.
[39]CHEN W, YAO X Q, CAI K Z, et al. Silicon alleviates drought stress of rice plants by improving plant water status,photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Rresearch,2011,142(1):67-76.
[40]陈绕生,薛林宝. 纳米硒、铜对干旱胁迫下番茄生长、光合特性及产量的影响[J]. 江苏农业科学,2022,50(12):127-134.
[41]吴焕焕,张虹,任志红,等. 叶面喷硒对茶树叶片光合特性及产量的影响[J]. 山东农业科学,2021,53(6):64-68.
[42]徐金涛,庞敏,马新,等. CO2加富对塔玛亚历山大藻叶绿素荧光参数及产量的影响[J]. 海洋与湖沼,2016,47(3):557-563.
[43]赵玉文, 林玲, 南吉斌, 等. 几种模型下砂生槐叶绿素荧光-快速光响应曲线(RLCS)拟合的比较[J]. 北方园艺,2019(9):83-89.
[44]CHEN Z Y, PENG Z S, YANG J, et al. A mathematical model for describing light-response curves in Nicotiana tabacum L.[J]. Photosynthetica,2011,49(3):467-471.

备注/Memo

备注/Memo:
收稿日期:2024-09-04基金项目:2021年安徽省高校优秀拔尖人才培育项目(gxbjZD2021073)作者简介:薛园园(2001-),女,安徽亳州人,硕士研究生,主要从事植物学研究。(E-mail)3237131080@qq.com通讯作者:陈延松,(E-mail)ottffss7531_cn@126.com
更新日期/Last Update: 2025-07-16