参考文献/References:
[1]BIN RAHMAN A N M R, ZHANG J H. Trends in rice research:2030 and beyond[J]. Food and Energy Security,2023,12(2):e390.
[2]SUN W X, FAN J, FANG A F, et al. Ustilaginoidea virens:insights into an emerging rice pathogen[J]. Annual Review of Phytopathology,2020,58:363-385.
[3]QIU J, MENG S, DENG Y, et al. Ustilaginoidea virens:a fungus infects rice flower and threats world rice production[J]. Rice Science,2019,26(4):199-206.
[4]ZHOU L, MUBEEN M, IFTIKHAR Y, et al. Rice false smut pathogen:implications for mycotoxin contamination,current status,and future perspectives[J]. Frontiers in Microbiology,2024,15:1344831.
[5]ROY A, SAHU P K, DAS C, et al. Conventional and new-breeding technologies for improving disease resistance in lentil (Lens culinaris Medik)[J]. Frontiers in Plant Science,2023,13:1001682.
[6]陆煜,俞经虎,朱行飞,等. 基于卷积神经网络的轻量级水稻叶片病害识别模型[J]. 江苏农业学报,2024,40(2):312-319.
[7]BUJA I, SABELLA E, MONTEDURO A G, et al. Advances in plant disease detection and monitoring:from traditional assays to in-field diagnostics[J]. Sensors,2021,21(6):2129.
[8]ZENG W, LI M. Crop leaf disease recognition based on self-attention convolutional neural network[J]. Computers and Electronics in Agriculture,2020,172:105341.
[9]杨锋,姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型[J]. 智慧农业(中英文),2024,6(1):147-157.
[10]李仁杰,宋涛,高婕,等. 基于改进YOLOv5的自然环境下番茄患病叶片检测模型[J]. 江苏农业学报,2024,40(6):1028-1037.
[11]WANG J, WANG P X, TIAN H R, et al. A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables[J]. Computers and Electronics in Agriculture,2023,206:107705.
[12]鲍文霞,吴育桉,胡根生,等. 基于改进RDN网络的无人机茶叶图像超分辨率重建[J]. 农业机械学报,2023,54(4):241-249.
[13]HU G S, YAO P, WAN M Z, et al. Detection and classification of diseased pine trees with different levels of severity from UAV remote sensing images[J]. Ecological Informatics,2022,72:101844.
[14]BAO W X, ZHU Z Q, HU G S, et al. UAV remote sensing detection of tea leaf blight based on DDMA-YOLO[J]. Computers and Electronics in Agriculture,2023,205:107637.
[15]TETILA E C, MACHADO B B, ASTOLFI G, et al. Detection and classification of soybean pests using deep learning with UAV images[J]. Computers and Electronics in Agriculture,2020,179:105836.
[16]孙钰,周焱,袁明帅,等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报,2018,34(21):74-81.
[17]KERKECH M, HAFIANE A, CANALS R. Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach[J]. Computers and Electronics in Agriculture,2020,174:105446.
[18]胡根生,谢一帆,鲍文霞,等. 基于轻量型网络的无人机遥感图像中茶叶枯病检测方法[J]. 农业机械学报,2024,55(4):165-175.
[19]LI Y X, LI X, DAI Y M, et al. Lsknet:a foundation lightweight backbone for remote sensing[J]. International Journal of Computer Vision,2024,133:1410-1431.
[20]SONG Y F, ZHANG Z, SHAN C F, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(2):1474-1488.
[21]JAHMUNAH V, NG E Y K, AN R S, et al. Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals[J]. Computers in Biology and Medicine,2022,146:105550.
[22]SHEN L Y, LANG B H, SONG Z X. DS-YOLOv8-Based object detection method for remote sensing images[J]. IEEE Access,2023,11:125122-125137.
[23]SOLIMANI F, CARDELLICCHIO A, DIMAURO G, et al. Optimizing tomato plant phenoty detection:boosting YOLOv8 architecture to tackle data complexity[J]. Computers and Electronics in Agriculture,2024,218:108728.
[24]YANG S Z, WANG W, GAO S, et al. Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer[J]. Computers and Electronics in Agriculture,2023,215:108360.
[25]PAN P, GUO W L, ZHENG X M, et al. Xoo-YOLO:a detection method for wild rice bacterial blight in the field from the perspective of unmanned aerial vehicles[J]. Frontiers in Plant Science,2023,14:1256545.
相似文献/References:
[1]宋益民,丛国林.稻曲病、水稻穗颈瘟防治药剂筛选及其协同防治技术[J].江苏农业学报,2016,(06):1268.[doi:doi:10.3969/j.issn.1000-4440.2016.06.012]
SONG Yi-min,CONG Guo-lin.Fungicide screen on rice neck blast, rice false smut and preliminary study on its synergistic technique[J].,2016,(05):1268.[doi:doi:10.3969/j.issn.1000-4440.2016.06.012]
[2]张俊喜,成晓松,宋益民,等.中国水稻稻曲病研究进展[J].江苏农业学报,2016,(01):234.[doi:10.3969/j.issn.1000-4440.2016.01.037
]
ZHANG Jun-xi,CHENG Xiao-song,SONG Yi-min,et al.Research advances in rice false smut (Ustilaginoidea virens) in China[J].,2016,(05):234.[doi:10.3969/j.issn.1000-4440.2016.01.037
]
[3]张善文,谢泽奇,张晴晴.卷积神经网络在黄瓜叶部病害识别中的应用[J].江苏农业学报,2018,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
ZHANG Shan-wen,XIE Ze-qi,ZHANG Qing-qing.Application research on convolutional neural network for cucumber leaf disease recognition[J].,2018,(05):56.[doi:doi:10.3969/j.issn.1000-4440.2018.01.008]
[4]杨晋丹,杨涛,苗腾,等.基于卷积神经网络的草莓叶部白粉病病害识别[J].江苏农业学报,2018,(03):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
YANG Jin-dan,YANG Tao,MIAO Teng,et al.Recognition of powdery mildew disease of strawberry leaves based on convolutional neural network[J].,2018,(05):527.[doi:doi:10.3969/j.issn.1000-4440.2018.03.007]
[5]胡玲艳,周婷,刘艳,等.基于轻量级网络自适应特征提取的番茄病害识别[J].江苏农业学报,2022,38(03):696.[doi:doi:10.3969/j.issn.1000-4440.2022.03.015]
HU Ling-yan,ZHOU Ting,LIU Yan,et al.Tomato disease recognition based on lightweight network auto-adaptive feature extraction[J].,2022,38(05):696.[doi:doi:10.3969/j.issn.1000-4440.2022.03.015]