参考文献/References:
[1]张子峰. 我国辣椒产业发展现状、主要挑战与应对之策[J]. 北方园艺,2023(14):153-158.
[2]乔立娟,赵帮宏,宗义湘,等. 我国辣椒产业发展现状、趋势及对策[J]. 中国蔬菜,2023(11):9-15.
[3]祝显萍. 辣椒种植技术及病害防治[J]. 种子科技,2023,41(21):93-95.
[4]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified,real-time object detection[C]//THE COMPUTER VISION FOUNDATION. 2016 IEEE conference on computer vision and pattern recognition (CVPR). Las Vegas,NV,USA:IEEE,2016:779-788.
[5]LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[M]//LEIBE B, MATAS J, SEBE N, et al. Computer vision-ECCV 2016 Part1. Cham:Springer International Publishing,2016:21-37.
[6]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,42(2):318-327.
[7]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 2014 IEEE conference on computer vision and pattern recognition. Columbus,OH,USA:IEEE,2014:580-587.
[8]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[9]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[10]储鑫,李祥,罗斌,等. 基于改进YOLOv4算法的番茄叶部病害识别方法[J]. 江苏农业学报,2023,39(5):1199-1208.
[11]施杰,林双双,张威,等. 基于轻量化改进型YOLOv5s的玉米病虫害检测方法[J]. 江苏农业学报,2024,40(3):427-437.
[12]刘诗怡,胡滨,赵春. 基于改进YOLOv7的黄瓜叶片病虫害检测与识别[J]. 农业工程学报,2023,39(15):163-171.
[13]周维,牛永真,王亚炜,等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
[14]邹玮,岳延滨,冯恩英,等. 基于YOLOv2的辣椒叶部蚜虫图像识别[J]. 山东农业大学学报(自然科学版),2023,54(5):700-709.
[15]尚俊平,张冬阳,席磊,等. 基于多尺度特征融合和注意力机制的辣椒病害识别模型[J]. 河南农业大学学报,2024,58(6):1021-1033.
[16]李西兴,陈佳豪,吴锐,等. 基于改进MaxViT的辣椒病害识别分类方法[J]. 华中农业大学学报,2024,43(2):123-133.
[17]姚飞. 基于卷积神经网络的辣椒病害检测方法研究与应用[D]. 重庆:重庆大学,2022.
[18]丁文宽. 基于卷积神经网络和机器视觉的辣椒检测与识别[D]. 天津:天津理工大学,2017.
[19]王启锟,王旭. 基于改进YOLOv5的辣椒目标检测算法研究[J]. 建模与仿真,2023,12(5):4654-4662.
[20]PRATAP V K, KUMAR N S. High-precision multiclass classification of chili leaf disease through customized EffecientNetB4 from chili leaf images[J]. Smart Agricultural Technology,2023,5:100295.
[21]KANAPARTHI K R, SUDHAKAR ILANGO S. A survey on training issues in chili leaf diseases identification using deep learning techniques[J]. Procedia Computer Science,2023,218:2123-2132.
[22]刘子洋,徐慧英,朱信忠,等. Bi-YOLO:一种基于YOLOv8n改进的轻量化目标检测算法[J]. 计算机工程与科学,2024,46(8):1444-1454.
[23]付辰伏,任力生,王芳. 基于改进YOLOv8的牛只行为识别与跟踪方法[J]. 农业机械学报,2024,55(5):290-301.
[24]WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9:learning what you want to learn using programmable gradient information[Z/OL]. (2024-02-29). http://arxiv.org/pdf/2402.13616.
[25]LI H L, LI J, WEI H B, et al. Slim-neck by GSConv:a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing,2024,21(3):62.
[26]WANG C Y, BOCHKOVSKIY A, MARK LIAO H Y. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE. 2023 IEEE/CVF conference on computer vision and pattern recognition (CVPR). Vancouver,BC,Canada:IEEE,2023:7464-7475.