参考文献/References:
[1]洪晓月. 农业昆虫学[M]. 3版. 北京:中国农业出版社,2017:77-80.
[2]付虹雨,王薇,卢建宁,等. 基于无人机多光谱遥感和机器学习的苎麻理化性状估测[J]. 农业机械学报,2023,54(5):194-200,347.
[3]向友珍,安嘉琪,赵笑,等. 基于无人机多光谱遥感的大豆生长参数和产量估算[J]. 农业机械学报,2023,54(8):230-239.
[4]姜友谊,刘博伟,张成健,等. 利用无人机多光谱影像的多品种玉米成熟度监测[J]. 农业工程学报,2023,39(20):84-91.
[5]苏宝峰,刘砥柱,陈启帆,等. 基于时间序列植被指数的小麦条锈病抗性等级鉴定方法[J]. 农业工程学报,2024,40(4):155-165.
[6]DHAU I, ADAM E, MUTANGA O, et al. Detecting the severity of maize streak virus infestations in maize crop using in situ hyperspectral data[J]. Transactions of the Royal Society of South Africa,2018,73(1):8-15.
[7]杨宁,张天纬,张钊源,等. 水稻病害孢子多光谱衍射识别与病害源定位方法研究[J]. 农业机械学报,2023,54(4):250-258.
[8]严海军,卓越,李茂娜,等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测[J]. 农业工程学报,2022,38(11):64-71.
[9]向友珍,安嘉琪,赵笑,等. 基于无人机多光谱遥感的大豆生长参数和产量估算[J]. 农业机械学报,2023,54(8):230-239.
[10]胡田田,赵璐,崔晓路,等. 无人机多光谱数据可靠性分析与冬小麦产量估算研究[J]. 农业机械学报,2023,54(12):217-225.
[11]CHIVASA W, MUTANGA O, BURGUEO J. UAV-based high-throughput phenotyping to increase prediction and selection accuracy in maize varieties under artificial MSV inoculation[J]. Computers and Electronics in Agriculture,2021,184:106128.
[12]FENNELL J, VEYS C, DINGLE J, et al. A method for real-time classification of insect vectors of mosaic and brown streak disease in cassava plants for future implementation within a low-cost,handheld,in-field multispectral imaging sensor[J]. Plant Methods,2018,14:82.
[13]彭要奇,肖颖欣,郑永军,等. 无人机光谱成像技术在大田中的应用研究进展[J]. 光谱学与光谱分析,2020,40(5):1356-1361.
[14]赵晋陵,金玉,叶回春,等. 基于无人机多光谱影像的槟榔黄化病遥感监测[J]. 农业工程学报,2020,36(8):54-61.
[15]MANDAL N, ADAK S, DAS D K, et al. Spectral characterization and severity assessment of rice blast disease using univariate and multivariate models[J]. Frontiers in Plant Science,2023,14:1067189.
[16]郭铭淇,包云轩,黄璐,等. 无人机多光谱影像在稻纵卷叶螟危害监测中的应用[J]. 江苏农业学报,2023,39(7):1530-1542.
[17]杨丽丽,张大卫,罗君,等. 基于SVM和AdaBoost的棉叶螨危害等级识别[J]. 农业机械学报,2019,50(2):14-20.
[18]LIU X D, SUN Q H. Early assessment of the yield loss in rice due to the brown planthopper using a hyperspectral remote sensing method[J]. International Journal of Pest Management,2016,62(3):205-213.
[19]KASINATHAN T, SINGARAJU D, UYYALA S R. Insect classification and detection in field crops using modern machine learning techniques[J]. Information Processing in Agriculture,2021,8(3):446-457.
[20]TUDA M, LUNA-MALDONADO A I. Image-based insect species and gender classification by trained supervised machine learning algorithms[J]. Ecological Informatics,2020,60:101135.
[21]MARKOVIC D, VUJICIC D, TANASKOVIC S, et al. Prediction of pest insect appearance using sensors and machine learning[J]. Sensors,2021,21(14):4846.
[22]王震,李映雪,吴芳,等. 冠层光谱红边参数结合随机森林机器学习估算冬小麦叶绿素含量[J]. 农业工程学报,2024,40(4):166-176.
[23]汪航,师茁,王岩,等. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究——以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[24]OLSSON P O, LINDSTRM J, EKLUNDH L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI[J]. Remote Sensing of Environment,2016,181:42-53.
[25]GREENE A D, REAY-JONES F P F, KIRK K R, et al. Spatial associations of key lepidopteran pests with defoliation,NDVI,and plant height in soybean[J]. Environmental Entomology,2021,50(6):1378-1392.