[1]王籽懿,韩伟,金鸿飚,等.高寒黑土区不同轮作模式对马铃薯根际土壤细菌群落结构与功能的影响[J].江苏农业学报,2025,(02):286-295.[doi:doi:10.3969/j.issn.1000-4440.2025.02.009]
 WANG Ziyi,HAN Wei,JIN Hongbiao,et al.Effects of different crop rotation modes on the structure and function of bacterial communities in potato rhizosphere soil in high-altitude black soil areas[J].,2025,(02):286-295.[doi:doi:10.3969/j.issn.1000-4440.2025.02.009]
点击复制

高寒黑土区不同轮作模式对马铃薯根际土壤细菌群落结构与功能的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
286-295
栏目:
耕作栽培·资源环境
出版日期:
2025-02-28

文章信息/Info

Title:
Effects of different crop rotation modes on the structure and function of bacterial communities in potato rhizosphere soil in high-altitude black soil areas
作者:
王籽懿1韩伟2金鸿飚3黄修梅1李明1
(1.内蒙古农业大学,内蒙古呼和浩特010019;2.雪川农业集团股份有限公司,河北张家口075000;3.呼伦贝尔市农牧科学研究所,内蒙古呼伦贝尔021000)
Author(s):
WANG Ziyi1HAN Wei2JIN Hongbiao3HUANG Xiumei1LI Ming1
(1.Inner Mongolia Agricultural University, Hohhot 010019, China;2.Xuechuan Agricultural Group Co., Ltd., Zhangjiakou 075000, China;3.Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir 021000, China)
关键词:
高寒黑土区轮作模式马铃薯根际土壤细菌群落结构细菌群落功能
Keywords:
high-altitude black soil areasrotation patternpotatorhizosphere soilbacterial community structurebacterial community function
分类号:
S154.3;S532
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.009
文献标志码:
A
摘要:
为明确不同轮作模式对马铃薯根际土壤细菌群落的影响,本研究以马铃薯-小麦-甜菜-马铃薯(A处理)、马铃薯-水飞蓟-小麦-马铃薯(B处理)、小麦-甜菜-小麦-马铃薯(C处理),油菜-小麦-甜菜-马铃薯(D处理),小麦-油菜-大麦-马铃薯(E处理)和油菜-小麦-马铃薯-马铃薯(CK,对照)6种种植模式为研究对象,采用细菌16S区的高通量测序技术,对比分析当地6种种植模式对马铃薯根际土壤细菌群落结构和功能的影响。结果表明,6种轮作模式的土壤样本共获得36 420个扩增子序列变异(ASV),划分为45门、119纲、298目、451科、790属和357种。不同轮作模式马铃薯根际土壤主要优势菌群同为变形菌门、酸杆菌门、拟杆菌门、芽单胞菌门、放线菌门、浮霉菌门、疣微菌门、绿弯菌门、黏球菌门、髌骨菌门,但主要优势菌群的相对丰度在不同轮作模式中存在差异。与CK相比,轮作明显提高了细菌中酸杆菌门和芽单胞菌门细菌的相对丰度,而放线菌门细菌相对丰度明显降低,溶杆菌属细菌以及与碳、氮相关的功能菌相对丰度升高。组间群落差异分析(LEfSe)结果表明,在细菌群落中共鉴定出38个差异物种。通过基因功能预测发现,一级功能中新陈代谢的相对丰度最大(62.04%~62.46%),相对丰度大于1.0%的二级功能代谢通路有19类,其中碳水化合物代谢的相对丰度最高(12.93%~13.29%)。综上所述,轮作改变了土壤细菌群落结构,提高了土壤细菌中的优势功能菌,其中以小麦-甜菜-小麦-马铃薯轮作模式效果最好,更适宜高寒黑土区马铃薯产业的可持续发展。
Abstract:
To clarify the effects of different rotation patterns on bacterial communities in potato rhizosphere soil, six planting patterns of potato-wheat-sugar beet-potato (A treatment), potato-milk thistle-wheat-potato (B treatment), wheat-sugar beet-wheat-potato (C treatment), oilseed rape-wheat-sugar beet-potato (D treatment), wheat-oilseed rape-barley-potato (E treatment) and oilseed rape-wheat-potato-potato (CK, control) were studied. The high-throughput sequencing technology of bacterial 16S region was used to compare and analyze the effects of six local planting patterns on the structure and function of bacterial communities in potato rhizosphere soil. The results showed that a total of 36 420 amplicon sequence variations (ASVs) were obtained from the soil samples under the six rotation patterns, which were divided into 45 phyla, 119 classes, 298 orders, 451 families, 790 genera and 357 species. The dominant bacteria in potato rhizosphere soil under different rotation modes were Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadota, Actinobacteria, Planctomycetota, Verrucomicrobiota, Chloroflexi, Myxococcota and Patescibacteria. However, the relative abundance of the dominant bacteria was different under different rotation patterns. Compared with CK, rotation significantly increased the relative abundance of Acidobacteria and Gemmatimonadota, while the relative abundance of Actinobacteria decreased significantly. In addition, the relative abundance of Lysobacter and functional bacteria related to carbon and nitrogen increased. The results of inter-group community difference analysis (LEfSe) showed that 38 differential species in the bacterial community were identified. Through gene function prediction, it was found that the relative abundance of metabolism in primary function was the highest (62.04%-62.46%). There were 19 categories of secondary functional metabolic pathways with relative abundance greater than 1.0%, among which carbohydrate metabolism had the highest relative abundance (12.93%-13.29%). In summary, rotation changed the soil bacterial community structure and increased the dominant functional bacteria in soil bacteria. In this study, the rotation mode of wheat-sugar beet-wheat-potato had the best effect, which was more suitable for the sustainable development of potato industry in high-altitude black soil areas.

参考文献/References:

[1]孔晨晨,张世文,王维瑞,等. 不同连作年限设施农用地土壤有机碳与细菌群落功能特征[J]. 农业机械学报,2024,55(2):326-337.
[2]王静,程昱润,肖国举,等. 宁夏银北不同草田轮作模式对细菌群落组成特征的影响[J]. 农业机械学报,2021,52(7):283-292.
[3]顾美英,徐万里,马凯,等. 不同定植年限核桃园土壤细菌群落多样性及碳代谢功能特征[J]. 生态学杂志,2021,40(7):2045-2056.
[4]XUAN D T, GUONG V T, ROSLING A, et al. Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice,Oryza sativa[J]. Biology and Fertility of Soils,2012,48(2):217-225.
[5]PETERS R D, STURZ A V, CARTER M R, et al. Developing disease-suppressive soils through crop rotation and tillage management practices[J]. Soil and Tillage Research,2003,72(2):181-192.
[6]李戌清,张雅,田忠玲,等. 茄子连作与轮作土壤养分、酶活性及微生物群落结构差异分析[J]. 浙江大学学报(农业与生命科学版),2017,43(5):561-569.
[7]李文娇,杨殿林,赵建宁,等. 长期连作和轮作对农田土壤生物学特性的影响研究进展[J]. 中国农学通报,2015,31(3):173-178.
[8]MARSCHNER P, CROWLEY D, YANG C H. Development of specific rhizosphere bacterial communities in relation to plant species,nutrition and soil type[J]. Plant and Soil,2004,261(1):199-208.
[9]ZHAO J, ZHANG R F, XUE C, et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China[J]. Microbial Ecology,2014,67(2):443-453.
[10]SUN B, DONG Z X, ZHANG X X, et al. Rice to vegetables:short-versus long-term impact of land-use change on the indigenous soil microbial community[J]. Microbial Ecology,2011,62(2):474-485.
[11]宋丹丹. 东北黑土区不同土地利用方式对土壤细菌群落结构的影响[D]. 哈尔滨:哈尔滨师范大学,2023.
[12]陈孟立,曾全超,黄懿梅,等. 黄土丘陵区退耕还林还草对土壤细菌群落结构的影响[J]. 环境科学,2018,39(4):1824-1832.
[13]CUI J W, SONG D L, DAI X L, et al. Effects of long-term cropping regimes on SOC stability,soil microbial community and enzyme activities in the Mollisol region of Northeast China[J]. Applied Soil Ecology,2021,164:103941.
[14]南丽丽,谭杰辉,郭全恩. 黄土高原半干旱区轮作休耕模式对土壤真菌的影响[J]. 生态学报,2020,40(23):8582-8592.
[15]CHAMBERLAIN L A, WHITMAN T, AN J M, et al. Corn-soybean rotation,tillage,and foliar fungicides:Impacts on yield and soil fungi[J]. Field Crops Research,2021,262:108030.
[16]邓超超,李玲玲,谢军红,等. 耕作措施对陇中旱农区土壤细菌群落的影响[J]. 土壤学报,2019,56(1):207-216.
[17]YAN S S, SONG J M, FAN J S, et al. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China[J]. Global Ecology and Conservation,2020,22:e00962.
[18]GONG X W, LIU C J, LI J, et al. Responses of rhizosphere soil properties,enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China[J]. Soil and Tillage Research,2019,195:104355.
[19]VAN DER HEIJDEN M G A, BARDGETT R D, VAN STRAALEN N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310.
[20]张向前,杨文飞,徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述[J]. 生态环境学报,2019,28(12):2464-2472.
[21]VENKATESWARLU B, SRINIVASARAO C. Soil Microbial Diversity and the Impact of Agricultural Practices[J]. Indian Journal of Dryland Agricultural Research and Development,2004,19(2):97-105.
[22]CHAER G, FERNANDES M, MYROLD D, et al. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils[J]. Microbial Ecology,2009,58(2):414-424.
[23]YAO H Y, JIAO X D, WU F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity[J]. Plant and Soil,2006,284(1):195-203.
[24]FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):626-631.
[25]任益,刘鸿雁,吴龙华,等. 黔西北土壤重金属高区晚疫病马铃薯根际土壤真菌群落特征[J]. 生态学杂志,2023,42(9):2148-2155.
[26]NAYYAR A, HAMEL C, LAFOND G, et al. Soil microbial quality associated with yield reduction in continuous-pea[J]. Applied Soil Ecology,2009,43(1):115-121.
[27]张瑞福,沈其荣. 抑病型土壤的微生物区系特征及调控[J]. 南京农业大学学报,2012,35(5):125-132.
[28]WEN X Y, DUBINSKY E, WU Y, et al. Wheat,maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere[J]. Journal of Integrative Agriculture,2016,15(8):1892-1902.
[29]谭雪莲,郭天文,刘高远. 马铃薯连作土壤微生物特性与土传病原菌的相互关系[J]. 灌溉排水学报,2016,35(8):30-35.
[30]杜洋洋,包媛媛,刘项宇,等. 荞麦轮作对云南栽培马铃薯根际土壤酶活和微生物的影响[J]. 中国农业科技导报, 2024,26(5):192-200.
[31]肖新,朱伟,杜超,等. 轮作与施肥对滁菊连作土壤微生物特性的影响[J]. 应用生态学报,2015,26(6):1779-1784.
[32]马学兰,周连玉,孙文娟,等. 青海不同区域农田作物土壤细菌多样性及群落结构分析[J]. 微生物学报,2024,64(4):1142-1161.
[33]FIERER N, LAUBER C L, RAMIREZ K S, et al. Comparative metagenomic,phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal,2012,6(5):1007-1017.
[34]SHEN Z Z, ZHONG S T, WANG Y G, et al. Induced soil microbial suppression of banana Fusarium wilt disease using compost and biofertilizers to improve yield and quality[J]. European Journal of Soil Biology,2013,57:1-8.
[35]LIU X, ZHANG J L, GU T Y, et al. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach[J]. PLoS One,2014,9(1):e86610.
[36]纳小凡,郑国旗,邢正操,等. 连作对再植枸杞根际细菌群落多样性和群落结构的影响[J]. 土壤学报,2017,54(5):1280-1292.
[37] BARANIECKI C A, AISLABIE J, FOGHT J M. Characterization of Sphingomonas sp.Ant 17,an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil[J]. Microbial Ecology,2002,43(1):44-54.
[38]王娜,武坤毅,崔浪军,等. 溶杆菌属细菌鉴定及生防机制概况[J]. 西北农林科技大学学报(自然科学版),2015,43(5):174-182,191.
[39]孙建平,刘雅辉,左永梅,等. 盐地碱蓬根际土壤细菌群落结构及其功能[J]. 中国生态农业学报(中英文),2020,28(10):1618-1629.
[40]张拓,徐飞,怀宝东,等. 松花江下游沿江湿地土地利用变化对土壤细菌群落多样性的影响[J]. 环境科学,2020,41(9):4273-4283.
[41]XIA Q, LIU X L, GAO Z Q, et al. Responses of rhizosphere soil bacteria to 2-year tillage rotation treatments during fallow period in semiarid southeastern Loess Plateau[J]. Peer J,2020,8:e8853.
[42]杜宇佳,高广磊,陈丽华,等. 呼伦贝尔沙区土壤细菌群落结构与功能预测[J]. 中国环境科学,2019,39(11):4840-4848.
[43]刘平静,肖杰,孙本华,等. 长期不同施肥措施下土细菌群落结构变化及其主要影响因素[J]. 植物营养与肥料学报,2020,26(2):307-315.

相似文献/References:

[1]李丹,李小霞,李万星,等.谷子不同轮作模式对土壤理化性质及细菌群落的影响[J].江苏农业学报,2022,38(06):1500.[doi:doi:10.3969/j.issn.1000-4440.2022.06.007]
 LI Dan,LI Xiao-xia,LI Wan-xing,et al.Effects of crops-millet rotations on soil physicochemical properties and bacterial community[J].,2022,38(02):1500.[doi:doi:10.3969/j.issn.1000-4440.2022.06.007]

备注/Memo

备注/Memo:
收稿日期:2024-04-22基金项目:内蒙古自治区重点研发和成果转化计划项目(2022YFDZ0010);河北省科技计划结转项目(21326320D);内蒙古自治区农牧厅基层农业推广体系改革与建设补充及重大农业技术协同推广资金项目作者简介:王籽懿(1996-),女,河北张家口人,硕士研究生,主要研究方向为作物栽培。(E-mail)1754899519@qq.com通讯作者:黄修梅,(E-mail)huangxm0404@126.com
更新日期/Last Update: 2025-03-27