[1]李梦倩,樊继德,葛洁,等.大蒜全基因组ABCB基因鉴定及表达分析[J].江苏农业学报,2024,(12):2207-2218.[doi:doi:10.3969/j.issn.1000-4440.2024.12.003]
 LI Mengqian,FAN Jide,GE Jie,et al.Genome-wide identification and expression analysis of ABCB genes in garlic(Allium sativum L.)[J].,2024,(12):2207-2218.[doi:doi:10.3969/j.issn.1000-4440.2024.12.003]
点击复制

大蒜全基因组ABCB基因鉴定及表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年12期
页码:
2207-2218
栏目:
遗传育种·生理生化
出版日期:
2024-12-30

文章信息/Info

Title:
Genome-wide identification and expression analysis of ABCB genes in garlic(Allium sativum L.)
作者:
李梦倩樊继德葛洁杨青青陆新娟赵永强刘灿玉张碧薇刘光杨杨艳杨峰
(江苏徐淮地区徐州农业科学研究所,江苏徐州221121)
Author(s):
LI MengqianFAN JideGE JieYANG QingqingLU XinjuanZHAO YongqiangLIU CanyuZHANG BiweiLIU GuangyangYANG YanYANG Feng
(Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China)
关键词:
大蒜ABCB基因家族体细胞胚
Keywords:
garlicABCB gene familysomatic embryo
分类号:
Q786;S633.4
DOI:
doi:10.3969/j.issn.1000-4440.2024.12.003
文献标志码:
A
摘要:
为探究生长素转运蛋白ABCB基因(AsaABCB)在大蒜体细胞胚发生过程中的作用机理,以徐蒜6号为试验材料,采取生物信息学方法,对大蒜AsaABCB基因家族成员进行全基因组鉴定,并利用实时荧光定量PCR(qRT-PCR)技术进行胚发育过程中AsaABCB家族基因表达模式分析。结果表明,大蒜中共存在17个AsaABCB基因,定位在7条染色体上,在系统进化树上可分为5个亚组。AsaABCB基因编码的氨基酸数量为545~1 379个,相对分子量为59 627.17~152 864.21,理论等电点为5.72~9.34。AsaABCB4、AsaABCB6、AsaABCB15蛋白定位于细胞膜和细胞质中,其余AsaABCB蛋白仅定位于细胞膜。17个AsaABCB基因的启动子区存在196个光反应元件、48个茉莉酸反应调控元件、26个脱落酸反应元件及12个生长素响应元件。11个AsaABCB家族基因在大蒜胚性愈伤组织(EC)阶段相对表达量较高,5个AsaABCB家族基因在愈伤组织(CA)阶段表达量较高,这表明该家族基因可能主要调控大蒜体细胞胚发育过程中EC和CA的形成与发育。本研究结果为深入探索大蒜体细胞胚发育过程中AsaABCB基因的功能奠定基础。
Abstract:
In order to explore the mechanism of auxin transporter ABCB gene (AsaABCB) in the process of somatic embryogenesis of garlic, the whole genome of garlic AsaABCB gene family members was identified by bioinformatics method. The expression pattern of AsaABCB family genes during embryo development was analyzed by real-time fluorescence quantitative PCR (qRT-PCR) using Xusuan 6 as experimental material. The results showed that there were 17 AsaABCB genes in garlic, which were located on seven chromosomes and could be divided into five subgroups. The number of amino acids encoded by AsaABCB gene was 545-1 379, the relative molecular weight was 59 627.17-152 864.21, and the theoretical isoelectric point was 5.72-9.34. AsaABCB4, AsaABCB6 and AsaABCB15 proteins were localized in the cell membrane and cytoplasm, and the remaining AsaABCB proteins were only localized in the cell membrane. There were 196 light response elements, 48 jasmonic acid response elements, 26 abscisic acid response elements and 12 auxin response elements in the promoter region of 17 AsaABCB genes. The relative expression levels of 11 AsaABCB family genes were higher in the embryogenic callus (EC) stage of garlic, and the expression levels of five AsaABCB family genes were higher in the callus (CA) stage, indicating that the family genes may mainly regulate the formation and development of EC and CA during the development of garlic somatic embryos. The results of this study lay a foundation for further exploring the function of AsaABCB genes during garlic somatic embryo development.

参考文献/References:

[1]刘晓雪,程智慧. 大蒜种质超低温保存及脱毒技术研究进展[J]. 中国蔬菜,2013(2):12-19.
[2]刘世琦. 蔬菜栽培学简明教程[M]. 北京:化学工业出版社,2007.
[3]葛洁,杨峰,陆信娟,等. 温度对大蒜花形态建成和花粉活力的影响[J]. 江苏农业学报,2024,40(7):1297-1304.
[4]XU K, CHANG Y, LIU K, et al. Regeneration of solanum nigrum by somatic embryogenesis, involving frog egg-like body, a novel structure[J]. PLoS One,2017,9(6):e98672.
[5]LOYOLA V, VICTOR M, OCHOA A, et al. Somatic embryogenesis. An overview[M]. Switzerland:Springer International Publishing,2016:1-8.
[6]ZIMMERMAN J L. Somatic embryogenesis:a model for early development in higher plants[J]. The Plant Cell,1993,5(10):1411-1423.
[7]SUN X, ZHU S, LI N, et al. A chromosome-level genome assembly of garlic (Allium sativum L.) provides insights into genome evolution and allicin biosynthesis[J]. Molecular Plant,2020,13(9):1328-1339.
[8]FUJIMURA T. Carrot somatic embryogenesis. A dream come true[J]. Plant Biotechnology Reports,2014,8(1):23-28.
[9]EVA Z, S A M, YANG H B, et al. Auxin transporters-why so many[J]. Cold Spring Harbor Perspectives in Biology,2010,2(3):a001552.
[10]MRQUEZ-LPEZ R E, PREZ-HERNNDEZ C, KU-GONZLEZ , et al. Localization and transport of indole-3-acetic acid during somatic embryogenesis in coffea canephora.[J]. Protoplasma,2018,255(2):695-708.
[11]SU Y H, ZHANG X S. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis[J]. Plant Signaling Behavior,2009,4(7):574-576.
[12]SANCHEZ F R, DAVIES T G E, COLEMAN J O D, et al. The Arabidopsis thaliana ABC protein superfamily, a complete inventory[J]. The Journal of Biological Chemistry,2001,276(32):30231-30244.
[13]徐杏,邱杰,徐扬,等. 水稻ABCB转运蛋白基因的分子进化和表达分析[J]. 中国水稻科学, 2012, 26(2):127-136.
[14]AKIR B, KILICKAYA O. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera[J]. PLoS One,2017,8(11):e78860.
[15]PANG K, LI Y, LIU M, et al. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize(Zea mays L.)[J]. Gene,2013,526(2):411-428.
[16]OLAWUYI O J, OLOGIDI C G. Genomic survey of ATP-binding Cassette(ABC)transporters in Sorghum bicolor(L.) Moench[J]. Journal of Agronomy and Crop Science,2018,1(1):102.
[17]ECHAI C, EWANG Y, EVALLIYODAN B, et al. Comprehensive analysis of the soybean(Glycine max) GmLAX auxin transporter gene family[J]. Frontiers in Plant Science,2016,7:282.
[18]SWARUP R, PERET, BENJAMIN. AUX/LAX family of auxin influx carriers-an overview[J]. Frontiers in Plant Science,2012,3(225):225.
[19]MACIEK A, JIRI F. PIN-dependent auxin transport:action, regulation, and evolution[J]. Plant Cell,2015,27(1):20-32.
[20]XU X Y, LIU Y, CHEN T S, et al. The B subfamily of plant ATP binding cassette transporters and their roles in auxin transport[J]. Biologia Plantarum,2014,58(3):401-410.
[21]DO THT, MARTINOIA E, LEE Y. Functions of ABC transporters in plant growth and development[J]. Current Opinion in Plant Biology,2018,41:32-38.
[22]HIGGINS C F. ABC transporters:from microorganisms to man[J]. Annual Review of Cell Biology,1992,8(1):67-113.
[23]HIGGINS C F, LINTON K J. The ATP switch model for ABC transporters[J]. Nature Structural Molecular Biology,2004,11(10):918-926.
[24]JOSY B T, ALBERT G, JAN D S. Structural diversity of ABC transporters[J]. The Journal of General Physiology,2014,143(4):419-435.
[25]VERRIER J P, BIRD D, BURLA B, et al. Plant ABC proteins-a unified nomenclature and updated inventory[J]. Trends in Plant Science,2008,13(4):151-159.
[26]ZHU W X, MEI S W, FENG M Y, et al. Research progress of ABC transporters in Arabidopsis thaliana[J]. Plant Physiology Journal,2017,2:4-15.
[27]MARKUS G, BIBEK A, MARTIN D D, et al. A critical view on ABC transporters and their interacting partners in auxin transport[J]. Plant Cell Physiology,2017,58(10):1601-1614.
[28]JENNESS K M, CARRARO N, PRITCHARD A C, et al. The Arabidopsis ATP-binding cassette transporter ABCB21 regulates auxin levels in cotyledons,the root pericycle, and leaves[J]. Frontiers in Plant Science,2019,10:806.
[29]于晓丽,陈超妍,吴雪宁,等. 大白菜ABCB/PGP基因家族的鉴定与分析[J]. 南方农业,2021,15(6):1-4,17.
[30]YANG Y, HUANG Q, WANG X, et al. Genome-wide identification and expression profiles of ABCB gene family in Chinese hickory(Carya cathayensis Sarg.) during grafting[J]. Plant Physiology and Biochemistry,2021,168:477-487.
[31]QUE F, ZHU Y, LIU Q, et al. Genome-wide identification,expansion,evolution,and expression analysis reveals ABCB genes important for secondary cell wall development in Moso Bamboo(Phyllostachys edulis)[J]. Agronomy,2023,13(7):1-18.
[32]董新玉,邓浪,张亚春,等. 大蒜全基因组WOX基因家族鉴定及密码子使用偏性分析[J]. 西南农业学报,2022,35(2):285-293.
[33]闫艺薇,田洁. 大蒜AC基因家族的鉴定与低温表达分析[J]. 中国农业科技导报,2023,25(4):67-76.
[34]袁晓戈,李富,张雪钰,等. 大蒜全基因组NCED基因鉴定与功能初探[J]. 中国蔬菜,2023(3):47-56.
[35]YANG Q Q, YANG F, ZHAO Y Q, et al. Genome-wide identification and functional characterization of WRKY transcription factors involved in the response to salt and heat stress in garlic(Allium sativum L.)[J]. Biotechnology & Biotechnological Equipment,2021,35(1):1956-1966.
[36]贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展[J]. 植物学报,2019,54(6):688-698.
[37]刘海静,田星,王露,等. 毛果杨多聚半乳糖醛酸酶抑制蛋白家族PtPGIP的生物信息学分析[J]. 山西农业科学,2023,51(8):852-860.
[38]YOSHIHISA K, KAZUYOSHI T, MASAFUMI H, et al. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration[J]. Plant Cell Physiology,2012,53(12):2090-2100.
[39]徐艳霞. OsABCB14参与水稻生长素转运及铁平衡[D]. 杭州:浙江大学,2014.
[40]宋胜利. 细叶百合体细胞胚发生过程中LpABCB21和LpPILS7功能初步解析[D]. 沈阳:沈阳农业大学,2020.

相似文献/References:

[1]孙艳军,史珑燕,徐刚,等.锌肥施用量对大蒜产量、品质及矿质元素含量的影响[J].江苏农业学报,2016,(04):891.[doi:10.3969/j.issn.100-4440.2016.04.028]
 SUN Yan-jun,SHI Long-yan,XU Gang,et al.Yield, quality and mineral element content of garlic in response to zinc fertilization[J].,2016,(12):891.[doi:10.3969/j.issn.100-4440.2016.04.028]
[2]王薇薇,郭军,梅燚,等.大蒜种质资源的综合评价与聚类分析[J].江苏农业学报,2017,(02):397.[doi:doi:10.3969/j.issn.1000-4440.2017.02.025]
 WANG Wei-wei,GUO Jun,MEI Yi,et al.Comprehensive evaluation and clustering analysis of garlic germplasm resources[J].,2017,(12):397.[doi:doi:10.3969/j.issn.1000-4440.2017.02.025]
[3]巫明焱,董光,税丽,等.基于Landsat 8影像的济宁市春季主要作物种植面积变化监测[J].江苏农业学报,2018,(03):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
 WU Ming-yan,DONG Guang,SHUI Li,et al.Change detection of main spring crops area in Jining based on Landsat 8 images[J].,2018,(12):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
[4]郭文琦,张培通,李春宏,等.大蒜苗期农艺性状与青蒜产量的关系[J].江苏农业学报,2018,(06):1319.[doi:doi:10.3969/j.issn.1000-4440.2018.06.017]
 GUO Wen-qi,ZHANG Pei-tong,LI Chun-hong,et al.The relationship between main agronomic traits and yield of garlic sprout during garlic seedling stage[J].,2018,(12):1319.[doi:doi:10.3969/j.issn.1000-4440.2018.06.017]
[5]高丹娜,吴淑华,涂丽琴,等.河南大蒜韭葱黄条病毒的分子鉴定及其系统进化分析[J].江苏农业学报,2020,(04):875.[doi:doi:10.3969/j.issn.1000-4440.2020.04.010]
 GAO Dan-na,WU Shu-hua,TU Li-qin,et al.Molecular identification and phylogenetic analysis of leek yellow stripe virus from garlic in Henan province[J].,2020,(12):875.[doi:doi:10.3969/j.issn.1000-4440.2020.04.010]
[6]杨青青,杨峰,赵永强,等.大蒜热激转录因子基因AsHSFB1的克隆、亚细胞定位及其表达分析[J].江苏农业学报,2023,(01):169.[doi:doi:10.3969/j.issn.1000-4440.2023.01.020]
 YANG Qing-qing,YANG Feng,ZHAO Yong-qiang,et al.Cloning, subcellular localization and expression analysis of garlic heat shock transcription factor gene AsHSFB1[J].,2023,(12):169.[doi:doi:10.3969/j.issn.1000-4440.2023.01.020]
[7]葛洁,杨峰,陆信娟,等.温度对大蒜花形态建成和花粉活力的影响[J].江苏农业学报,2024,(07):1297.[doi:doi:10.3969/j.issn.1000-4440.2024.07.016]
 GE Jie,YANG Feng,LU Xinjuan,et al.Effect of temperature on flower morphogenesis and pollen viability of garlic[J].,2024,(12):1297.[doi:doi:10.3969/j.issn.1000-4440.2024.07.016]
[8]田孟凡,戴威威,周佳慧,等.大蒜内生贝莱斯芽孢杆菌促进蒜氨酸积累[J].江苏农业学报,2024,(12):2283.[doi:doi:10.3969/j.issn.1000-4440.2024.12.011]
 TIAN Mengfan,DAI Weiwei,ZHOU Jiahui,et al.Promotion of alliin accumulation by endogenous Bacillus velezensis in garlic[J].,2024,(12):2283.[doi:doi:10.3969/j.issn.1000-4440.2024.12.011]

备注/Memo

备注/Memo:
收稿日期:2024-03-07基金项目:徐州市农业科学院科研基金项目(XM2023009);徐州市政策引导类计划(产学研合作)项目(KC22452);国家现代农业产业技术体系项目(CARS-24-A-07)作者简介:李梦倩(1996-),女,河南鹤壁人,硕士,研究实习员,主要从事大蒜育种研究。(E-mail)limengqian1014@163.com通讯作者:杨峰,(E-mail)xz-yangfeng@163.com
更新日期/Last Update: 2025-01-23