[1]曾建红,郑玉才,李丛艳,等.蜀兴1号肉兔与伊拉兔肉质差异的分子机制[J].江苏农业学报,2024,(09):1689-1700.[doi:doi:10.3969/j.issn.1000-4440.2024.09.013]
 ZENG Jianhong,ZHENG Yucai,LI Congyan,et al.Molecular mechanism of transcriptomic and metabolomic differences between the longissimus dorsi muscle of Shuxing No.1 rabbit and Ira rabbit[J].,2024,(09):1689-1700.[doi:doi:10.3969/j.issn.1000-4440.2024.09.013]
点击复制

蜀兴1号肉兔与伊拉兔肉质差异的分子机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年09期
页码:
1689-1700
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2024-09-30

文章信息/Info

Title:
Molecular mechanism of transcriptomic and metabolomic differences between the longissimus dorsi muscle of Shuxing No.1 rabbit and Ira rabbit
作者:
曾建红12郑玉才2李丛艳13郭志强13杨锐13郑洁13李钰莹13任永军13雷岷13谢晓红13邝良德13
(1.四川省畜牧科学研究院,四川成都610066;2.西南民族大学畜牧兽医学院,四川成都610041;3.动物遗传育种四川省重点实验室,四川成都610066)
Author(s):
ZENG Jianhong12ZHENG Yucai2LI Congyan13GUO Zhiqiang13YANG Rui13ZHENG Jie13LI Yuying13REN Yongjun13LEI Min13XIE Xiaohong13KUANG Liangde13
(1.Sichuan Animal Science Academy, Chengdu 610066, China;2.College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;3.Animal Genetics and Breeding Key Laboratory of Sichuan Province, Chengdu 610066, China)
关键词:
转录组学代谢组学蜀兴1号肉兔伊拉兔肉质
Keywords:
transcriptomicsmetabolomicsShuxing No.1 rabbitIra rabbitmeat quality
分类号:
S829.1
DOI:
doi:10.3969/j.issn.1000-4440.2024.09.013
文献标志码:
A
摘要:
为明确蜀兴1号肉兔(SX)与伊拉兔(IRA)肉质差异及差异形成分子机制,本研究通过采集2个品种兔背最长肌样品,进行肉质性状测定及转录组测序和代谢组分析,筛选差异表达基因和差异代谢物并进行功能富集分析。结果表明,蜀兴1号肉兔的肌纤维直径和滴水损失率显著低于伊拉兔,而肌纤维密度、熟肉率和肌内脂肪含量显著高于伊拉兔。蜀兴1号肉兔与伊拉兔转录组中共筛选出81个差异表达基因,其中蜀兴1号肉兔中51个基因上调,30个基因下调。SMTNL1、PM20D2和EDN1等可能是导致两种兔肉品质差异的基因。差异表达基因显著富集于cAMP信号传导途径。挥发性代谢组学比较共得到12种差异显著代谢物,均在蜀兴1号肉兔中上调,其中,2-十一烯醛、4-乙基辛酸、(E)-2-壬烯醛、鸟氨酸和十一醛等代谢物与肉质风味正相关,挥发性代谢物显著富集于2-氧代羧酸代谢、ABC转运蛋白和精氨酸生物合成等KEGG代谢通路。广泛靶向代谢组学比较分析共得到15种差异显著代谢物,其中蜀兴1号肉兔中7种代谢物上调,8种下调,2个品种兔肉中γ-L-谷氨酸-L-谷氨酰胺、L-谷氨酸-L-谷氨酰胺和溶血磷脂酰胆碱(LPC)等肉质风味相关物质的含量差异较大,广泛靶向代谢物显著富集于咖啡因代谢和昼夜节律夹带等KEGG代谢通路。本研究得到的差异表达基因和差异代谢物可为进一步的优质兔养殖和优质兔选育提供参考依据。
Abstract:
In order to clarify the difference of meat quality between Shuxing No.1 rabbit (SX) and Ira rabbit (IRA) and the molecular mechanism of the difference formation, the longissimus dorsi muscle samples of two varieties of rabbits were collected for meat quality trait determination, transcriptome sequencing and metabolomics analysis, and differentially expressed genes and differentially expressed metabolites were screened and their functional enrichment analysis was performed. The results showed that the muscle fiber diameter and drip loss rate of SX were significantly lower than those of IRA, while the muscle fiber density, cooked meat rate and intramuscular fat content were significantly higher than those of IRA. A total of 81 differentially expressed genes were screened in the transcriptome of SX and IRA. Among them, 51 genes were up-regulated and 30 genes were down-regulated in SX. SMTNL1, PM20D2 and EDN1 might be the genes that lead to the difference in meat quality between SX and IRA. The differentially expressed genes were significantly enriched in the cAMP signaling pathway. A total of 12 significantly different metabolites were obtained by volatile metabolomics comparison, all of which were up-regulated in SX. Among them, metabolites such as 2-undecenal, 4-ethyloctanoic acid, (E)-2-nonenal, ornithine and undecanal were positively correlated with meat flavor. The volatile metabolites were significantly enriched in KEGG metabolic pathways such as 2-oxocarboxylic acid metabolism, ABC transporter and arginine biosynthesis. A total of 15 significantly different metabolites were obtained by extensive targeted metabolomics comparative analysis. Among them, seven metabolites were up-regulated and eight metabolites were down-regulated in SX. The contents of meat flavor-related substances such as γ-L-glutamic acid-L-glutamine, L-glutamic acid-L-glutamine and lysophosphatidylcholine (LPC) in SX and IRA were significantly different. Widely targeted metabolites were significantly enriched in KEGG metabolic pathways such as caffeine metabolism and circadian rhythm entrainment. The differentially expressed genes and differential metabolites obtained in this study can provide a reference for further high-quality rabbit breeding.

参考文献/References:

[1]武拉平,王建勋,秦应和. 2022年兔产业生产概况、2023年发展趋势及政策建议[J]. 中国畜牧杂志,2023,59(3):348-352.
[2]谢跃杰. 伊拉兔肉腥味物质及其体内沉积变化的研究[D]. 重庆:西南大学,2016.
[3]李丛艳,梅秀丽,邝良德,等. 限饲对蜀兴1号商品兔生长性能、屠宰性能及肉品质的影响[J]. 中国畜牧杂志,2022,58(1):247-251.
[4]MENG X, GAO Z, LIANG Y, et al. Longissimus dorsi muscle transcriptomic analysis of Simmental and Chinese native cattle differing in meat quality[J]. Frontiers in Veterinary Science,2020,7:601064.
[5]CHEN B, YUE Y, LI J, et al. Transcriptome-metabolome analysis reveals how sires affect meat quality in hybrid sheep populations[J]. Frontiers in Nutrition,2022,9:967985.
[6]HU Z, CAO J, GE L, et al. Characterization and comparative transcriptomic analysis of skeletal muscle in Pekin duck at different growth stages using RNA-Seq[J]. Animals,2021,11(3):834.
[7]REN L, LIU A, WANG Q, et al. Transcriptome analysis of embryonic muscle development in Chengkou Mountain Chicken[J]. BMC Genomics,2021,22(1):431.
[8]OTT K H, ARANIBAR N, SINGH B, et al. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts[J]. Phytochemistry,2003,62(6):971-985.
[9]ZHOU H, YANG Y, WANG L, et al. Integrated multi-omic data reveal the potential molecular mechanisms of the nutrition and flavor in Liancheng white duck meat[J]. Frontiers in Genetics,2022,13:939585.
[10]CARTONI MANCINELLI A, SILLETTI E, MATTIOLI S, et al. Fatty acid profile, oxidative status, and content of volatile organic compounds in raw and cooked meat of different chicken strains[J]. Poultry Science,2021,100(2):1273-1282.
[11]CHEN C, ZHENG J, XIONG C, et al. Metabolomics characterize the differential metabolic markers between Bama Xiang pig and Debao pig to identify pork[J]. Foods,2022,12(1):5.
[12]刘浪,熊国远,朱秀柏. 家兔的胴体性状和肉品质测定方法[J]. 中国养兔杂志,2009(3):11-14.
[13]PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology,2015,33(3):290-295.
[14]LIAO Y, SMYTH G K, SHI W. FeatureCounts:an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics,2014,30(7):923-930.
[15]ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR:a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics,2010,26(1):139-140.
[16]KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[17]李金玲,白昊鑫,马晶晶,等. 肉鹅制品中松香酸和脱氢松香酸残留的高效液相色谱检测方法[J]. 江苏农业科学,2023,51(11):174-178.
[18]梁鹏,张稳,冯登侦,等. 基于转录组学筛选绵羊肉质性状相关候选基因[J]. 华北农学报,2022,37(4):220-231.
[19]陈勇,朱友军,邹万瑞,等. 舍饲牦牛、犏牛与放牧牦牛的肌纤维特性研究[J]. 湖北农业科学,2019,58(21):141-144,149.
[20]PAN P, QIN Z, XIE W, et al. Identification of differentially expressed genes in the longissimus dorsi muscle of Luchuan and Duroc Pigs by transcriptome sequencing[J]. Genes (Basel),2023,14(1):132.
[21]ZHAO L, LI F, ZHANG X, et al. Integrative analysis of transcriptomics and proteomics of longissimus thoracis of the Hu sheep compared with the Dorper sheep[J]. Meat Science,2022,193:108930.
[22]赵旺生,李柯锐,张婷婷,等. 基于高通量转录组测序的牦牛和犏牛附睾尾部差异表达基因分析[J]. 南方农业学报,2023,54(5):1273-1282.
[23]丁玥竹,任宇,扈孟雪,等. 云南独龙鸡和红原鸡卵巢组织转录组水平的比较分析[J]. 江苏农业科学,2023,51(5):38-44.
[24]袁建,敖政,曾素梅,等. 基于转录组测序的摘除卵巢藏姜母猪背最长肌脂代谢相关基因筛选与分析[J]. 南方农业学报,2023,54(3):669-680.
[25]王钱保,姜润深,黎寿丰,等. 光照调控优质肉鸡性成熟的转录组分析[J]. 江苏农业科学,2022,50(3):16-21.
[26]熊讯,阮涌,许厚强. 基于转录组分析干扰FABP1基因对猪肌内脂肪沉积的影响[J]. 南方农业学报,2023,54(3):724-734.
[27]BORMAN M A, FREED T A, HAYSTEAD T A, et al. The role of the calponin homology domain of smoothelin-like 1 (SMTNL1) in myosin phosphatase inhibition and smooth muscle contraction[J]. Molecular and Cellular Biochemistry,2009,327(1/2):93-100.
[28]LONTAY B, BODOOR K, SIPOS A, et al. Pregnancy and smoothelin-like protein 1 (smtnl1) deletion promote the switching of skeletal muscle to a glycolytic phenotype in human and mice[J]. Journal of Biological Chemistry,2015,290(29):17985-17998.
[29]MURALI M, MACDONALD J A. Smoothelins and the control of muscle contractility[J]. Advances in Pharmacological Sciences,2018,81:39-78.
[30]MAJOR E, GYRY F, HORVTH D, et al. Smoothelin-like protein 1 regulates development and metabolic transformation of skeletal muscle in hyperthyroidism[J]. Frontiers in Endocrinology,2021,12:751488.
[31]HUANG X, HE P, WU L. Clinical significance of peptidase m20 domain containing 1 ii patients with carotid atherosclerosis[J]. Arquivos Brasileiros de Cardiologia,2022,119(3):372-379.
[32]VEIGA-DA-CUNHA M, CHEVALIER N, STROOBANT V, et al. Metabolite proofreading in carnosine and homocarnosine synthesis:molecular identification of PM20D2 as β-alanyl-lysine dipeptidase[J]. Journal of Biological Chemistry,2014,289(28):19726-19736.
[33]KOBAYASHI Y, YOSHIMOTO Y, YAMAMOTO Y, et al. Roles of EDNs in regulating oviductal NO synthesis and smooth muscle motility in cows[J]. Reproduction,2016,151(6):615-622.
[34]张润,杨曼,王立贤,等. 畜禽肉中代谢物质对肉品质的影响及相关基因研究进展[J]. 畜牧兽医学报,2022,53(8):2444-2452.
[35]SHI X, ZHANG X, SONG S, et al. Identification of characteristic flavour precursors from enzymatic hydrolysis-mild thermal oxidation tallow by descriptive sensory analysis and gas chromatography-olfactometry and partial least squares regression[J]. Journal of Chromatography B,2013,913/914:69-76.
[36]WANG Y R, WANG S L, LUO R M. Evaluation of key aroma compounds and protein secondary structure in the roasted Tan mutton during the traditional charcoal process[J]. Frontiers in Nutrition,2022,9:1003126.
[37]KAFFARNIK S, PREUSS S, VETTER W. Direct determination of flavor relevant and further branched-chain fatty acids from sheep subcutaneous adipose tissue by gas chromatography with mass spectrometry[J]. Journal of Chromatography A,2014,1350:92-101.
[38]DURAZZO A, LUCARINI M, NAZHAND A, et al. The nutraceutical value of carnitine and its use in dietary supplements[J]. Molecules,2020,25(9):2127.
[39]HERMAN A, HERMAN A P. Caffeine’s mechanisms of action and its cosmetic use[J]. Skin Pharmacology and Physiology,2013,26(1):8-14.
[40]LI Y, WANG J, WANG T, et al. Differences between Kazak Cheeses fermented by single and mixed strains using untargeted metabolomics[J]. Foods,2022,11(7):966.
[41]WENG K, SONG L, BAO Q, et al. Comparative characterization of key volatile compounds in slow- and fast-growing duck raw meat based on widely targeted metabolomics[J]. Foods,2022,11(24):3975.

相似文献/References:

[1]刘启月,李勇,陈小龙,等.基于代谢组学分析桃胶中酚类化合物含量及抗氧化活性[J].江苏农业学报,2021,(03):746.[doi:doi:10.3969/j.issn.1000-4440.2021.03.026]
 LIU Qi-yue,LI Yong,CHEN Xiao-long,et al.Analysis on phenolics contents and antioxidant activity in peach gum based on metabolomics[J].,2021,(09):746.[doi:doi:10.3969/j.issn.1000-4440.2021.03.026]
[2]刘晴晴,李勇,张明霞,等.紫色桑葚和白色桑葚总酚含量、抗氧化能力及代谢指纹图谱差异分析[J].江苏农业学报,2022,38(03):813.[doi:doi:10.3969/j.issn.1000-4440.2022.03.029]
 LIU Qing-qing,LI yong,ZHANG Ming-xia,et al.Differences in total phenol content, antioxidant activity and metabolic fingerprint between purple mulberry and white mulberry[J].,2022,38(09):813.[doi:doi:10.3969/j.issn.1000-4440.2022.03.029]
[3]马仁罡,孙健英,李宗芸.基于生物信息学的甘薯基因组学等研究进展[J].江苏农业学报,2021,(02):531.[doi:doi:10.3969/j.issn.1000-4440.2021.02.032]
 MA Ren-gang,SUN Jian-ying,LI Zong-yun.Research progress of sweet potato genomics and other omics based on bioinformatics[J].,2021,(09):531.[doi:doi:10.3969/j.issn.1000-4440.2021.02.032]

备注/Memo

备注/Memo:
收稿日期:2023-09-18基金项目:国家兔产业技术体系项目(CARS-43-D-1);四川省财政运行专项(SASA2024CZYX004);四川省“十四五”育种攻关项目(2021YFYZ0033);四川省科研院所科技成果转化项目(2023N22J0001)作者简介:曾建红(1998-),女,四川绵阳人,硕士,主要从事家兔繁殖与饲养管理。(E-mail)1762725547@qq.com通讯作者:邝良德,(E-mail)215640832@qq.com
更新日期/Last Update: 2024-11-17