[1]马林杰,张诚信,覃宝利,等.秸秆及生物炭还田对稻虾共作模式水稻产量、氮肥利用率及土壤肥力的影响[J].江苏农业学报,2024,(09):1623-1632.[doi:doi:10.3969/j.issn.1000-4440.2024.09.006]
 MA Linjie,ZHANG Chengxin,QIN Baoli,et al.Effects of straw and biochar returning on rice yield, nitrogen use efficiency and soil fertility in a rice-crayfish integrated system[J].,2024,(09):1623-1632.[doi:doi:10.3969/j.issn.1000-4440.2024.09.006]
点击复制

秸秆及生物炭还田对稻虾共作模式水稻产量、氮肥利用率及土壤肥力的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年09期
页码:
1623-1632
栏目:
耕作栽培·资源环境
出版日期:
2024-09-30

文章信息/Info

Title:
Effects of straw and biochar returning on rice yield, nitrogen use efficiency and soil fertility in a rice-crayfish integrated system
作者:
马林杰1张诚信1覃宝利1杨军1杨婷1徐荣1王守红1张家宏1寇祥明1陈选青2王展3张旭晖4
(1.江苏里下河地区农业科学研究所,江苏扬州225007;2.扬州银谷农业生态发展有限公司,江苏扬州225119;3.扬州市气象局,江苏扬州225000;4.江苏省气候中心,江苏南京210009)
Author(s):
MA Linjie1ZHANG Chengxin1QIN Baoli1YANG Jun1YANG Ting1XU Rong1 WANG Shouhong1ZHANG Jiahong1KOU Xiangming1CHEN Xuanqing2WANG Zhan3ZHANG Xuhui4
(1.Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou 225007, China;2.Yangzhou Yingu Agricultural Ecological Development Co., Ltd., Yangzhou 225119, China;3.Yangzhou Meteorological Bureau, Yangzhou 225000, China;4.Jiangsu Provincial Climate Center, Nanjing 210009, China)
关键词:
稻虾共作生物炭水稻产量氮肥利用率土壤肥力
Keywords:
rice-crayfish integrated systembiocharriceyieldnitrogen use efficiencysoil fertility
分类号:
S314;S365
DOI:
doi:10.3969/j.issn.1000-4440.2024.09.006
文献标志码:
A
摘要:
为了明确稻虾共作模式下促进水稻增产、氮肥利用率提高和土壤肥力提升的适宜的秸秆还田方式,本研究设置了5个处理[无秸秆还田和无氮肥施用(CK)、无秸秆还田(NS)、秸秆还田(S)、低量生物炭还田(LB)和高量生物炭还田(HB)],对比研究秸秆还田及生物炭还田处理在水稻产量、水稻生长、氮肥利用率和土壤肥力指标上的差异。结果表明,与NS处理相比,仅LB处理和HB处理显著增加了水稻不同生育时期的茎蘖数、叶片SPAD值、叶面积指数、成穗率、地上部生物量、氮吸收量和产量,但LB处理和HB处理之间差异不显著。与NS处理和S处理相比,水稻氮肥利用率指标在LB处理和HB处理下均显著提高,但LB处理和HB处理在氮肥偏生产力、氮肥籽粒生产效率、氮肥干物质生产效率上无显著差异。整体上看,LB处理和HB处理较NS处理显著提高氧化还原电位、pH、阳离子交换量、有机碳含量和氮磷钾有效性,但两者在土壤氧化还原电位和pH上差异不显著。综合各处理在水稻产量、氮肥利用率和土壤肥力上的表现,本研究认为,稻虾共作模式下低量生物炭还田(7.5 t/hm2)是促进水稻高产、氮肥利用率提高和土壤肥力提升的适宜的秸秆还田方式。
Abstract:
In order to clarify the optimum straw returning mode for improving rice yield, nitrogen use efficiency and soil fertility under the rice-crayfish integrated system, a field experiment was conducted to investigate the differences in the indicators of rice growth and yield, rice nitrogen use efficiency as well as soil fertility between straw returning treatment and biochar returning treatment. There were five treatments, including no straw returning and no nitrogen fertilizer application (CK), no straw returning (NS), straw returning (S), biochar returning at low rate (LB) and biochar returning at high rate (HB). The results showed that the tiller number, leaf SPAD value and leaf area index at different rice growth stages as well as the percentage of productive tillers, aboveground biomass, nitrogen uptake and grain yield were only significantly increased under LB and HB treatments compared with NS treatment. But there were no significant differences in these indicators between LB and HB treatments. Indicators of rice nitrogen use efficiency were significantly increased under LB and HB treatments compared with NS and S treatments, but there were no significant differences in nitrogen partial factor productivity, nitrogen use efficiency for grain production and nitrogen use efficiency for dry matter production between LB and HB treatments. On the whole, LB and HB treatments resulted in the marked increases in soil redox potential, pH, cation exchange capacity, organic carbon content and availabilities of nitrogen, phosphorus and potassium compared with NS treatment. But there were no significant differences in soil redox potential and pH between LB and HB treatments. Therefore, by integrating the performances of various treatments on rice yield, nitrogen use efficiency and soil fertility, the optimum straw returning mode under the rice-crayfish integrated system is applying biochar at low rate (7.5 t/hm2), which can improve rice yield, nitrogen use efficiency and soil fertility.

参考文献/References:

[1]曹凑贵,江洋,汪金平,等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报,2017,25(9):1245-1253.
[2]唐建军,李巍,吕修涛,等. 中国稻渔综合种养产业的发展现状与若干思考[J]. 中国稻米,2020,26(5):1-10.
[3]于秀娟,郝向举,党子乔,等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产,2023(2):5-17.
[4]YUAN P L, WANG J P, LI C F, et al. Soil quality indicators of integrated rice-crayfish farming in the Jianghan Plain, China using a minimum data set[J]. Soil and Tillage Research,2020,204:104732.
[5]SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports,2017,7(1):2856.
[6]YU J X, REN Y, XU T, et al. Physicochemical water quality parameters in typical rice-crayfish integrated systems (RCIS) in China[J]. International Journal of Agricultural and Biological Engineering,2018,11(3):54-60.
[7]张家宏,叶浩,朱凌宇,等. 江淮地区“一稻三虾”综合种养绿色生产技术[J]. 湖北农业科学,2019,58(8):110-113.
[8]佀国涵,彭成林,徐祥玉,等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报,2017,25(1):61-68.
[9]向万胜,周卫军,古汉虎. CaO2等缓性释氧物改善土壤氧化还原条件的作用及对水稻生长的影响[J]. 土壤学报,1996,33(2):220-224.
[10]张瑞春,张玉屏,周雪峰,等. 潜育化稻田品种耐潜性差异与栽培技术研究[J]. 中国稻米,2014,20(1):60-62.
[11]张福锁,王激清,张卫峰,等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报,2008,45(5):915-924.
[12]于飞,施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报,2015,52(6):1311-1324.
[13]XU G W, JIANG M M, LU D K, et al. Nitrogen forms affect the root characteristic,photosynthesis,grain yield,and nitrogen use efficiency of rice under different irrigation regimes[J]. Crop Science,2020,60(5):2594-2610.
[14]ZHENG C X, ZHANG Z Y, WU Y Y, et al. Response of vertical migration and leaching of nitrogen in percolation water of paddy fields under water-saving irrigation and straw return conditions[J]. Water,2019,11(4):868.
[15]HOU J, ZHANG D Y, ZHU J Q. Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice-crayfish rotation[J]. Environmental Pollution,2021,271:116367.
[16]JOSEPH S D, CAMPSARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Australian Journal of Soil Research,2010,48(7):501-515.
[17]LEHMANN J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment,2007,5(7):381-387.
[18]LI L, HE L X, LI Y Q, et al. Deep fertilization combined with straw incorporation improved rice lodging resistance and soil properties of paddy fields[J]. European Journal of Agronomy,2023,142:126659.
[19]LIU L Y, LI H Y, ZHU S H, et al. The response of agronomic characters and rice yield to organic fertilization in subtropical China: a three-level meta-analysis[J]. Field Crops Research,2021,263:108049.
[20]SHEN J L, TANG H, LIU J Y, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems[J]. Agriculture, Ecosystems & Environment,2014,188:264-274.
[21]SUI Y H, GAO J P, LIU C H, et al. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China[J]. Science of the Total Environment,2016,544:203-210.
[22]黄恒,姜恒鑫,刘光明,等. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报,2021,47(11):2232-2249.
[23]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,1999:22-308.
[24]邹娟,鲁剑巍,陈防,等. 长江流域油菜氮磷钾肥料利用率现状研究[J]. 作物学报,2011,37(4):729-734.
[25]CASSMAN K G, PENG S B, OLK D C, et al. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Research,1998,56(1/2):7-39.
[26]AMBAVARAM M M R, BASU S, KRISHNAN A, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]. Nature Communications,2014,5:5302.
[27]MA L J, ZHANG C X, XU R, et al. Slow-release nitrogen fertilizer reduces input without yield loss in a rice-crayfish integrated system[J]. Nutrient Cycling in Agroecosystems,2024,128(1):35-51.
[28]王守红,张诚信,马林杰,等. 稻虾共作模式下利于水稻产量稻米品质协同的适宜栽插密度[J]. 江苏农业学报,2023,39(8):1668-1679.
[29]段秀建,张巫军,姚雄,等. 缓控释肥组配对早熟籼稻作为中稻——再生稻栽培模式产量和氮肥利用率的影响[J]. 南方农业学报,2022,53(1):38-46.
[30]郭诗梦,牟静怡,翟文举,等. 有机肥等氮替代化肥对粳稻产量及干物质积累的影响[J]. 江苏农业科学,2022,50(19):56-61.
[31]杨洪,李旭毅,卿发红,等. 不同产量水平水稻群体光合特性和产量构成差异[J]. 江苏农业学报,2023,39(5):1089-1096.
[32]张斯梅,顾克军,张传辉,等. 麦秸全量还田下减氮施肥对粳稻产量形成和氮素吸收利用的影响[J]. 江苏农业学报,2023,39(2):360-367.
[33]HUANG L F, YU J, YANG J, et al. Relationships between yield, quality and nitrogen uptake and utilization of organically grown rice varieties[J]. Pedosphere,2016,26(1):85-97.
[34]FAGERIA N K, DOS SANTOS A B, CUTRIM V D. Nitrogen uptake and its association with grain yield in lowland rice genotypes[J]. Journal of Plant Nutrition,2009,32(11):1965-1974.
[35]陈伟. 添加生物炭和秸秆对海南稻菜轮作土壤氮素利用率和N2O排放的影响[D]. 海口:海南大学,2021.
[36]HUANG M, YANG L, QIN H D, et al. Fertilizer nitrogen uptake by rice increased by biochar application[J]. Biology and Fertility of Soils,2014,50(6):997-1000.
[37]SEYEDGHASEMI S M, MOGHADDAM P R, ESFAHANI M. Optimization of biochar and nitrogen fertilizer in rice cultivation[J]. Journal of Plant Nutrition,2021,44(12):1705-1718.
[38]PENG S Z, YANG S H, XU J Z, et al. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements[J]. Paddy and Water Environment,2011,9(3):333-342.
[39]SARKAR M I U, JAHAN A, HOSSAIN A, et al. Effect of nutrient omission on rice yield in a wetland double rice cropping system[J]. Journal of Plant Nutrition,2022,46(2):312-320.
[40]GOSAL S K, GILL G K, SHARMA S, et al. Soil nutrient status and yield of rice as affected by long-term integrated use of organic and inorganic fertilizers[J]. Journal of Plant Nutrition,2018,41(4):539-544.
[41]全文博. 生物炭对稻虾共作土壤理化性质和水稻生长的影响[D]. 武汉: 华中农业大学,2022.
[42]KUZYAKOV Y, SUBBOTINA I, CHEN H, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry,2009,41(2): 210-219.
[43]LIU J, JIANG B S, SHEN J L, et al. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems[J]. Agriculture, Ecosystems & Environment,2021,311:107286.

相似文献/References:

[1]兰 天,张 辉,刘 源,等.玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J].江苏农业学报,2016,(02):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
 LAN Tian,ZHANG Hui,LIU Yuan,et al.Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J].,2016,(09):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
[2]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(09):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
[3]刘杰,韩士群,齐建华,等.生物碳含量对底泥活化原位脱氮及微生物活性的影响[J].江苏农业学报,2016,(01):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
 LIU Jie,HAN Shi-qun,QI Jian-hua,et al.Influence of biochar content on in-situ denitrification of sediment and microbial activity[J].,2016,(09):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
[4]乔光,田田,洪怡,等.生物炭对玛瑙红樱桃生长、果实品质及土壤矿质元素的影响[J].江苏农业学报,2017,(04):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
 QIAO Guang,TIAN Tian,HONG Yi,et al.Effects of biochar on growth and fruit quality of Prunus pseudocerasu Manaohong and mineral element contents in soil[J].,2017,(09):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
[5]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(09):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[6]范如芹,罗佳,张振华.复合调理剂对栽培基质性能及蔬菜生长的影响[J].江苏农业学报,2018,(04):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
 FAN Ru-qin,LUO Jia,ZHANG Zhen-hua.Effects of composite conditioner on properties of soilless conditioner and vegetable growth[J].,2018,(09):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(09):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]范如芹,周运来,李赟,等.秸秆发酵还田提升土壤腐殖质含量与品质[J].江苏农业学报,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
 FAN Ru-qin,ZHOU Yun-lai,LI Yun,et al.Straw fermentation incorporation improves soil humus content and quality[J].,2019,(09):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
[9]张晟,张徐洁,赵远,等.不同温度制备的水稻秸秆生物炭对稻田土壤固碳减排及微生物群落结构的影响[J].江苏农业学报,2019,(05):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
 ZHANG Sheng,ZHANG Xu-jie,ZHAO Yuan,et al.Effects of rice straw biochar prepared at different pyrolysis temperatures on carbon sequestration and mitigation and microbial community structure in paddy soil[J].,2019,(09):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
[10]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
 TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(09):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]

备注/Memo

备注/Memo:
收稿日期:2024-06-12基金项目:国家自然科学基金项目(32101303);江苏现代农业产业技术体系专项[JATS(2023)253];扬州市重点研发计划项目(YZ2023046);扬州市生态农业重点实验室项目(YZ2023244)作者简介:马林杰(1993-),男,安徽阜阳人,博士,助理研究员,主要从事生态农业研究。(E-mail)20212411@jaas.ac.cn通讯作者:寇祥明,(E-mail)kouxiangming@163.com
更新日期/Last Update: 2024-11-17