[1]李胜皓,张晓芝,潘月,等.基于响应面法对皇冠牡丹(Paeonia×lemoinei ‘Yellow Crown’)增殖培养基大量元素配方的优化[J].江苏农业学报,2024,(08):1493-1506.[doi:doi:10.3969/j.issn.1000-4440.2024.08.014]
 LI Shenghao,ZHANG Xiaozhi,PAN Yue,et al.Optimization of macro-elements composition in the multiplication medium of Paeonia×lemoinei ‘Yellow Crown’ based on response surface methodology[J].,2024,(08):1493-1506.[doi:doi:10.3969/j.issn.1000-4440.2024.08.014]
点击复制

基于响应面法对皇冠牡丹(Paeonia×lemoinei ‘Yellow Crown’)增殖培养基大量元素配方的优化()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年08期
页码:
1493-1506
栏目:
园艺
出版日期:
2024-08-30

文章信息/Info

Title:
Optimization of macro-elements composition in the multiplication medium of Paeonia×lemoinei ‘Yellow Crown’ based on response surface methodology
作者:
李胜皓张晓芝潘月郑冰雁文书生
(南京林业大学风景园林学院,江苏南京210000)
Author(s):
LI ShenghaoZHANG XiaozhiPAN YueZHENG BingyanWEN Shusheng
(College of Landscape Architecture, Nanjing Forestry University, Nanjing 210000, China)
关键词:
牡丹微繁殖响应面法增殖WPM培养基
Keywords:
tree peonymicropropagationresponse surface methodmultiplicationWPM medium
分类号:
S685.11
DOI:
doi:10.3969/j.issn.1000-4440.2024.08.014
文献标志码:
A
摘要:
增殖系数低一直是制约牡丹微繁殖技术推广应用的障碍之一,但目前的研究多集中于植物生长调节剂的使用与组合,较少关注培养基配方对牡丹试管苗增殖效果的影响。本研究以皇冠牡丹(Paeonia×lemoinei ‘Yellow Crown’)为试验材料,使用Design-Expert响应面法设计优化试验,探究WPM中5种大量元素[K2SO4、MgSO4·7H2O、KH2PO4、NH4NO3、Ca(NO3)2·4H2O]对皇冠牡丹试管苗增殖效果的影响,并建立数学模型分析预测最佳优化培养基配方。单因素效应分析结果表明,KH2PO4、NH4NO3与Ca(NO3)2·4H2O对牡丹试管苗的增殖效果有显著或极显著影响,而MgSO4·7H2O与K2SO4对牡丹试管苗的增殖效果无明显影响。交互作用分析结果表明,K2SO4与KH2PO4的交互作用对株高、茎长有显著或极显著影响,K2SO4与MgSO4·7H2O、KH2PO4与NH4NO3的交互作用对茎长有显著或极显著影响。根据试验数据构建模型进行分析预测,结果显示,5种大量元素优化配方为:K2SO4 2 257 mg/L、MgSO4·7H2O 907 mg/L、KH2PO4 481 mg/L、NH4NO3 200 mg/L与Ca(NO3)2·4H2O 1 963 mg/L。在该条件下开展验证试验,获得试管苗的增殖系数、株高、茎长与叶片数分别为2.43、4.62 cm、1.30 cm、6.75张,略高于Design-Expert试验得出的预测值,显著优于对照组,说明本研究成功优化了皇冠牡丹的专用增殖培养基配方。研究结果不仅能大幅提高皇冠牡丹的增殖效率,也为其他牡丹品种增殖培养体系的构建与改良提供重要的技术参考。
Abstract:
Low multiplication coefficient has been one of the obstacles limiting the industrial application of tree peony (Paeonia sect. Moutan) micropropagation technology, but most of the current studies have been focused on the use and combination of plant growth regulators, and less attention has been paid to the effect of medium formulation on the multiplication of test-tube seedlings of tree peony. In this study, we used Paeonia×lemoinei ‘Yellow Crown’ as the experimental material and designed an optimization test by using Design-Expert response surface method to investigate the effects of five macro-elements, such as K2SO4, MgSO4·7H2O, KH2PO4, NH4NO3, Ca(NO3)2·4H2O in WPM medium on the multiplication effect of the test-tube seedlings of Paeonia sect. Moutan, and developed a mathematical model to predict the best optimized medium formulation. Results of single factor effect analysis showed that, KH2PO4, NH4NO3 and Ca(NO3)2·4H2O had significant or highly significant effects on the multiplication effect of the test-tube seedlings, while MgSO4·7H2O and K2SO4 had no significant effects. Results of interaction analysis showed that, the interaction between K2SO4 and KH2PO4 had significant or highly significant effects on plant height, and stem length, the interactions between K2SO4 and MgSO4·7H2O, KH2PO4 and NH4NO3 had significant or hightly significant effects on stem length. Based on the experimental data, the model analysis results predicted that the optimized formulations for five macro-elements were K2SO4 2 257 mg/L, MgSO4·7H2O 907 mg/L, KH2PO4 481 mg/L, NH4NO3 200 mg/L and Ca(NO3)2·4H2O 1 963 mg/L. The validation test was conducted, and the multiplication coefficient, plant height, stem length and leaf number of the test-tube seedlings were 2.43, 4.62 cm, 1.30 cm and 6.75 respectively, which were slightly higher than the predicted values obtained by Design-Expert experiment and were significantly better than the control group, indicating the special multiplication medium for P.×lemoinei ‘Yellow Crown’ was constructed successfully. The results of this study can not only greatly improve the multiplication efficiency of P.×lemoinei ‘Yellow Crown’, but can also provide an important technical reference for the construction and improvement of multiplication culture system of other tree peony species.

参考文献/References:

[1]LI S S, YUAN R Y, CHEN L G, et al. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS[J]. Food Chemistry,2015,173(15):133-140.
[2]李玉龙,吴德玉,潘淑龙,等. 牡丹试管苗繁殖技术的研究[J]. 科学通报,1984(8):500-502.
[3]WEN S S, CHEN L, TIAN R N. Micropropagation of tree peony (Paeonia sect. Moutan):a review[J]. Plant Cell Tissue and Organ Culture,2020,141(4):1-14.

[4]黄素姣. 三个牡丹品种的离体快繁技术研究[D]. 北京:北京林业大学,2020.
[5]BERUTO M, CURIR P. In vitro culture of tree peony through axillary budding[M]. Berlin:Springer Netherlands,2007:477-497.
[6]BOUZA L, JACQUES M, MIGINIAC E. In vitro propagation of Paeonia suffruticosa Andr. cv. ‘Mme de Vatry’: developmental effects of exogenous hormones during the multiplication phase[J]. Scientia Horticulturae,1994,3(57):241-251.
[7]LI P, CHENG P Y. Basal medium with modified calcium source and other factors influence on shoots culture of tree peony[J]. Acta Hortic,2008(766):383-390.
[8]文书生,成仿云,钟原,等. ‘正午’牡丹微繁殖体系的建立[J]. 植物科学学报,2016,34(1):143-150.
[9]王新,成仿云,钟原,等. 凤丹牡丹鳞芽离体培养与快繁技术[J]. 林业科学,2016,52(5):101-110.
[10]武爱龙,何冰,吴建阳,等. 响应面法在植物组织培养中的应用进展[J]. 安徽农学通报,2020,26(17):21-22.
[11]AKIN M, EYDURAN E, REED B M. Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut[J]. Plant Cell, Tissue and Organ Culture,2017,128(2):303-316.
[12]KOVALCHUK I Y, MUKHITDINOVA Z, TURDIYEV T, et al. Modeling some mineral nutrient requirements for micropropagated wild apricot shoot cultures[J]. Plant Cell, Tissue and Organ Culture,2017,129(2):325-335.
[13]曹剑,黄志伟,李华,等. 利用响应面法优化毛叶木姜子茎段腋芽诱导条件[J]. 分子植物育种,2022,20(21):7209-7215.
[14]蔡正禹,文书生,田如男. 响应面法优化欧洲冬青‘Ferox Argentea’增殖培养基大量元素配方[J]. 东北林业大学学报,2023,51(6):53-63.
[15]黄弄璋. ‘正午’与‘凤丹’牡丹的离体增殖与生根移栽技术研究[D]. 北京:北京林业大学,2017.
[16]邱金梅. 牡丹离体快繁技术的研究[D]. 北京:北京林业大学,2010.
[17]文书生,何绒绒,郑佳康,等. 牡丹组织培养技术研究进展[J]. 林业科学,2018,54(10):143-155.
[18]EL-HAWAZ R F, BRIDGES W C, ADELBERG J W, et al. In Vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems[J]. PLoS One,2015,10(4):e0118912.
[19]杨雨璋,周贝贝,李民吉,等. 苹果矮化砧木‘SH6’组培快繁培养基大量元素配方的优化[J]. 果树学报,2020,37(1):40-49.
[20]董丽芬,肖颖,邵崇斌. 氮、磷、钾元素形态配比及浓度对油松胚培养的影响[J]. 西北林学院学报,2006,21(3):64-66.
[21]朱根发. 白鹤芋属观赏植物的组织培养和快速繁殖技术研究[J]. 中国农学通报,2003,19(3):75-76.
[22]HIRSCHI K D. The calcium conundrum. Both versatile nutrient and specific signal[J]. Plant Physiology,2004,136(1):2438-2442.
[23]NIEDZ R P, EVENS T J .The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinensis (L.) Osbeck)[J]. Bmc Plant Biology,2008,8(1):126.
[24]王庆仁,林葆. 植物硫营养研究的现状与展望[J]. 中国土壤与肥料,1996(3):16-19.
[25]PANG J Y, RYAN H M, HANS L, et al. Phosphorus acquisition and utilisation in crop legumes under global change[J]. Current Opinion in Plant Biology,2018,45:248-254.
[26]单佩佩. 牡丹体内外磷循环和根际微生物种群构成对外源磷素的响应[D]. 泰安:山东农业大学,2016.
[27]MISSON J, RAGHOTHAMA K G, JAIN A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation[J]. Proceedings of the National Academy of Sciences,2005,102(33):11934-11939.
[28]LI H X, CHEN Z J, ZHOU T, et al. High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars[J]. Journal of Integrative Agriculture,2018,17(12):2813-2821.
[29]VIAD A, FERNNDEZ-MARCOS M L, HERNNDEZ-NISTAL J, et al. Effect of particle size of limestone on Ca, Mg and K contents in soil and in sward plants[J]. Scientia Agricola,2011,68:200-208.
[30]KAMIYA T, YAMAGAMI M, HIRAI M Y, et al. Establishment of an in planta magnesium monitoring system using CAX3 promoter-luciferase in Arabidopsis[J]. Journal of Experimental Botany,2012,63(1):355-363.
[31]薛欣欣,魏云霞,王文斌,等. 钾、镁交互作用对橡胶幼苗生长及养分吸收的影响[J]. 植物营养与肥料学报,2020,26(10):1870-1878.
[32]FARHAT N, ELKHOUNI A, ZORRIG W, et al. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning[J]. Acta Physiologiae Plantarum,2016,38(6):145.
[33]HAND C, MAKI S, REED B M. Modeling optimal mineral nutrition for hazelnut micropropagation[J]. Plant Cell, Tissue and Organ Culture,2014,119(2):411-425.
[34]AKIN M, EYDURAN S P, EYDURAN E, et al. Analysis of macro nutrient related growth responses using multivariate adaptive regression splines[J]. Plant Cell, Tissue and Organ Culture,2020,140(3):661-670.
[35]REED B M, WADA S, DENOMA, J. et al. Improving in vitro mineral nutrition for diverse pear germplasm.[J]. In Vitro Cellular & Developmental Biology-Plant,2013,49(3):343-355.
[36]LLOYD G, MCCOWN B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture[J]. Combined Proceedings - International Plant Propagators’ Society (USA),1980,30:421-427.
[37]ALANAGH E N, GAROOSI G, HADDAD R, et al. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models[J]. Plant Cell, Tissue and Organ Culture,2014,117(3):349-359.
[38]PARK K, JANG B K, LEE H M, et al. Effective Propagation of Selaginella tamariscina through optimized medium composition[J]. Agronomy,2021,11(3):578.
[39]JAMSHIDI S, YADOLLAHI A, AHMADI H, et al. Predicting In vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models[J]. Frontiers in Plant Science,2016,7. DOI:10.3389/fpls.2016.00274.

[40]POOTHONG S, REED B M. Optimizing shoot culture media for Rubus germplasm: the effects of NH+4, NO-3, and total nitrogen[J]. In Vitro Cellular & Developmental Biology - Plant, 2016, 52(3):265-275.

[41]GAGO J, PREZ-TORNERO O, LANDN M, et al. Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: a practical case of data mining using apricot databases[J]. Journal of Plant Physiology,2011,168(15):1858-1865.

[42]MARTIN S M, ROSE D, HUI V. Growth of plant cell suspension cultures with ammonium as the sole sou. [J]. Canadian Journal of Botany,1977,55(22):2838-2843.

相似文献/References:

[1]贺丹,吴芳芳,张佼蕊,等.牡丹转录组SSR信息分析及其分子标记开发[J].江苏农业学报,2019,(06):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
 HE Dan,WU Fang-fang,ZHANG Jiao-rui,et al.Analysis of SSR information in transcriptome and development of molecular markers in Paeonia suffruticosa[J].,2019,(08):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
[2]张佼蕊,贺丹,何松林,等.芍药PlSPL3基因的克隆与表达分析[J].江苏农业学报,2020,(06):1537.[doi:doi:10.3969/j.issn.1000-4440.2020.06.025]
 ZHANG Jiao-rui,HE Dan,HE Song-lin,et al.Cloning and expression analysis of PlSPL3 gene from Paeonia lactiflora[J].,2020,(08):1537.[doi:doi:10.3969/j.issn.1000-4440.2020.06.025]
[3]贺丹,曹健康,何松林,等.芍药属植物远缘杂交亲和性及其雌蕊的生理响应机制[J].江苏农业学报,2023,(03):822.[doi:doi:10.3969/j.issn.1000-4440.2023.03.024]
 HE Dan,CAO Jian-kang,HE Song-lin,et al.Distant hybrid compatibility of Paeonia and its physiological response mechanism of pistil[J].,2023,(08):822.[doi:doi:10.3969/j.issn.1000-4440.2023.03.024]

备注/Memo

备注/Memo:
收稿日期:2023-08-09基金项目:国家自然科学基金项目(32001359);南京林业大学大学生创新训练计划项目(2022NFUSPITP0436)作者简介:李胜皓(1999-),女,重庆人,硕士研究生,研究方向为园林植物与观赏园艺。(E-mail)lynel1104@163.com通讯作者:文书生,(E-mail)shusheng0507@126.com
更新日期/Last Update: 2024-09-18