参考文献/References:
[1]LI S S, YUAN R Y, CHEN L G, et al. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS[J]. Food Chemistry,2015,173(15):133-140.
[2]李玉龙,吴德玉,潘淑龙,等. 牡丹试管苗繁殖技术的研究[J]. 科学通报,1984(8):500-502.
[3]WEN S S, CHEN L, TIAN R N. Micropropagation of tree peony (Paeonia sect. Moutan):a review[J]. Plant Cell Tissue and Organ Culture,2020,141(4):1-14.
[4]黄素姣. 三个牡丹品种的离体快繁技术研究[D]. 北京:北京林业大学,2020.
[5]BERUTO M, CURIR P. In vitro culture of tree peony through axillary budding[M]. Berlin:Springer Netherlands,2007:477-497.
[6]BOUZA L, JACQUES M, MIGINIAC E. In vitro propagation of Paeonia suffruticosa Andr. cv. ‘Mme de Vatry’: developmental effects of exogenous hormones during the multiplication phase[J]. Scientia Horticulturae,1994,3(57):241-251.
[7]LI P, CHENG P Y. Basal medium with modified calcium source and other factors influence on shoots culture of tree peony[J]. Acta Hortic,2008(766):383-390.
[8]文书生,成仿云,钟原,等. ‘正午’牡丹微繁殖体系的建立[J]. 植物科学学报,2016,34(1):143-150.
[9]王新,成仿云,钟原,等. 凤丹牡丹鳞芽离体培养与快繁技术[J]. 林业科学,2016,52(5):101-110.
[10]武爱龙,何冰,吴建阳,等. 响应面法在植物组织培养中的应用进展[J]. 安徽农学通报,2020,26(17):21-22.
[11]AKIN M, EYDURAN E, REED B M. Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut[J]. Plant Cell, Tissue and Organ Culture,2017,128(2):303-316.
[12]KOVALCHUK I Y, MUKHITDINOVA Z, TURDIYEV T, et al. Modeling some mineral nutrient requirements for micropropagated wild apricot shoot cultures[J]. Plant Cell, Tissue and Organ Culture,2017,129(2):325-335.
[13]曹剑,黄志伟,李华,等. 利用响应面法优化毛叶木姜子茎段腋芽诱导条件[J]. 分子植物育种,2022,20(21):7209-7215.
[14]蔡正禹,文书生,田如男. 响应面法优化欧洲冬青‘Ferox Argentea’增殖培养基大量元素配方[J]. 东北林业大学学报,2023,51(6):53-63.
[15]黄弄璋. ‘正午’与‘凤丹’牡丹的离体增殖与生根移栽技术研究[D]. 北京:北京林业大学,2017.
[16]邱金梅. 牡丹离体快繁技术的研究[D]. 北京:北京林业大学,2010.
[17]文书生,何绒绒,郑佳康,等. 牡丹组织培养技术研究进展[J]. 林业科学,2018,54(10):143-155.
[18]EL-HAWAZ R F, BRIDGES W C, ADELBERG J W, et al. In Vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems[J]. PLoS One,2015,10(4):e0118912.
[19]杨雨璋,周贝贝,李民吉,等. 苹果矮化砧木‘SH6’组培快繁培养基大量元素配方的优化[J]. 果树学报,2020,37(1):40-49.
[20]董丽芬,肖颖,邵崇斌. 氮、磷、钾元素形态配比及浓度对油松胚培养的影响[J]. 西北林学院学报,2006,21(3):64-66.
[21]朱根发. 白鹤芋属观赏植物的组织培养和快速繁殖技术研究[J]. 中国农学通报,2003,19(3):75-76.
[22]HIRSCHI K D. The calcium conundrum. Both versatile nutrient and specific signal[J]. Plant Physiology,2004,136(1):2438-2442.
[23]NIEDZ R P, EVENS T J .The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinensis (L.) Osbeck)[J]. Bmc Plant Biology,2008,8(1):126.
[24]王庆仁,林葆. 植物硫营养研究的现状与展望[J]. 中国土壤与肥料,1996(3):16-19.
[25]PANG J Y, RYAN H M, HANS L, et al. Phosphorus acquisition and utilisation in crop legumes under global change[J]. Current Opinion in Plant Biology,2018,45:248-254.
[26]单佩佩. 牡丹体内外磷循环和根际微生物种群构成对外源磷素的响应[D]. 泰安:山东农业大学,2016.
[27]MISSON J, RAGHOTHAMA K G, JAIN A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation[J]. Proceedings of the National Academy of Sciences,2005,102(33):11934-11939.
[28]LI H X, CHEN Z J, ZHOU T, et al. High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars[J]. Journal of Integrative Agriculture,2018,17(12):2813-2821.
[29]VIAD A, FERNNDEZ-MARCOS M L, HERNNDEZ-NISTAL J, et al. Effect of particle size of limestone on Ca, Mg and K contents in soil and in sward plants[J]. Scientia Agricola,2011,68:200-208.
[30]KAMIYA T, YAMAGAMI M, HIRAI M Y, et al. Establishment of an in planta magnesium monitoring system using CAX3 promoter-luciferase in Arabidopsis[J]. Journal of Experimental Botany,2012,63(1):355-363.
[31]薛欣欣,魏云霞,王文斌,等. 钾、镁交互作用对橡胶幼苗生长及养分吸收的影响[J]. 植物营养与肥料学报,2020,26(10):1870-1878.
[32]FARHAT N, ELKHOUNI A, ZORRIG W, et al. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning[J]. Acta Physiologiae Plantarum,2016,38(6):145.
[33]HAND C, MAKI S, REED B M. Modeling optimal mineral nutrition for hazelnut micropropagation[J]. Plant Cell, Tissue and Organ Culture,2014,119(2):411-425.
[34]AKIN M, EYDURAN S P, EYDURAN E, et al. Analysis of macro nutrient related growth responses using multivariate adaptive regression splines[J]. Plant Cell, Tissue and Organ Culture,2020,140(3):661-670.
[35]REED B M, WADA S, DENOMA, J. et al. Improving in vitro mineral nutrition for diverse pear germplasm.[J]. In Vitro Cellular & Developmental Biology-Plant,2013,49(3):343-355.
[36]LLOYD G, MCCOWN B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture[J]. Combined Proceedings - International Plant Propagators’ Society (USA),1980,30:421-427.
[37]ALANAGH E N, GAROOSI G, HADDAD R, et al. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models[J]. Plant Cell, Tissue and Organ Culture,2014,117(3):349-359.
[38]PARK K, JANG B K, LEE H M, et al. Effective Propagation of Selaginella tamariscina through optimized medium composition[J]. Agronomy,2021,11(3):578.
[39]JAMSHIDI S, YADOLLAHI A, AHMADI H, et al. Predicting In vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models[J]. Frontiers in Plant Science,2016,7. DOI:10.3389/fpls.2016.00274.
[40]POOTHONG S, REED B M. Optimizing shoot culture media for Rubus germplasm: the effects of NH+4, NO-3, and total nitrogen[J]. In Vitro Cellular & Developmental Biology - Plant, 2016, 52(3):265-275.
[41]GAGO J, PREZ-TORNERO O, LANDN M, et al. Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: a practical case of data mining using apricot databases[J]. Journal of Plant Physiology,2011,168(15):1858-1865.
[42]MARTIN S M, ROSE D, HUI V. Growth of plant cell suspension cultures with ammonium as the sole sou. [J]. Canadian Journal of Botany,1977,55(22):2838-2843.