[1]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464-1472.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
 HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(08):1464-1472.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
点击复制

基于改进YOLOv5s模型的田间食用玫瑰花检测方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年08期
页码:
1464-1472
栏目:
农业信息工程
出版日期:
2024-08-30

文章信息/Info

Title:
Detection method of edible roses in field based on improved YOLOv5s model
作者:
化春键12黄宇峰12蒋毅12俞建峰12陈莹3
(1.江南大学机械工程学院,江苏无锡214122;2.江苏省食品先进制造装备技术重点实验室,江苏无锡214122;3.江南大学物联网工程学院,江苏无锡214122)
Author(s):
HUA Chunjian12HUANG Yufeng12JIANG Yi12YU Jianfeng12CHEN Ying3
(1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;2.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China;3.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
关键词:
目标检测YOLOv5s特征融合注意力机制食用玫瑰花
Keywords:
object detectionYOLOv5sfeature fusionattention mechanismedible roses
分类号:
TP391.4
DOI:
doi:10.3969/j.issn.1000-4440.2024.08.011
文献标志码:
A
摘要:
为了在田间环境下准确检测食用玫瑰花及其成熟度,实现花期玫瑰花的自动化采摘,针对田间光照、遮挡等因素造成识别精度较差的问题,提出了一种基于YOLOv5s的改进模型,对花蕾期、采摘期、败花期食用玫瑰花的生长状态进行检测。首先,为了增强多尺度特征融合能力,对特征融合结构进行改进。其次,采用多分支结构训练提高精度,在颈部网络C3模块进行改进。最后,为了提升特征信息的提取能力,在颈部网络中添加融合注意力模块,使模型关注检测目标,减少玫瑰花的误检及漏检现象。改进后的模型检测总体类别平均精度较原始模型提升了3.6个百分点,达到90.4%,对3个花期玫瑰花的检测精度均有提升。本研究结果为非结构环境下的不同花期食用玫瑰花检测提供了更加准确的方法。
Abstract:
In order to accurately detect edible roses and their maturity in the field and realize the automatic picking of flowering roses, an improved model based on YOLOv5s was proposed to solve the problem of poor recognition accuracy caused by factors such as light and occlusion in the field. The growth state of edible roses at bud, picking and abortive flowering stages was detected. Firstly, in order to enhance the ability of multi-scale feature fusion, the feature fusion structure was improved. Secondly, multi-branch structure training was used to improve the accuracy, and the neck network C3 module was improved. Finally, in order to improve the ability of feature information extraction, a fusion attention module was added to the neck network to make the model focus on the detection target and reduce the false detection and missed detection of roses. The mean average precision of the improved model was 3.6 percentage points higher than that of the original model, reaching 90.4%, and the detection accuracy of roses in three flowering periods was improved. The results of this study provide a more accurate method for detecting edible roses at different flowering stages in unstructured environment.

参考文献/References:

[1]谢丽美,晏慧君,唐开学,等. 云南4个主栽食用玫瑰品种产量评价及营养成分分析[J]. 西南农业学报,2022,35(11):2627-2632.
[2]董万鹏,吴楠,吴洪娥,等. 不同食用玫瑰生长特性、花品质及生理变化特征[J]. 热带农业科学,2020,40(8):6-11.
[3]陈礼鹏. 基于机器视觉的簇生猕猴桃果实多目标识别方法研究[D]. 杨凌:西北农林科技大学,2018.

[4]吴超. 基于计算机视觉的玫瑰鲜切花质量分级评价[D]. 昆明:昆明理工大学,2020.
[5]SHAO Y, WANG Y, XUAN G, et al. Assessment of strawberry ripeness using hyperspectral imaging[J]. Analytical Letters,2020,54(10):1547-1560.
[6]CHAO Q, NYALALA I, CHEN K J. Detecting the early flowering stage of tea chrysanthemum using the F-YOLO model[J]. Agronomy,2021,11(5):834.
[7]王小荣,许燕,周建平,等. 基于改进YOLOv7的复杂环境下红花采摘识别[J]. 农业工程学报,2023,39(6):169-176.
[8]王彦钧. 食用玫瑰花采摘机器人研究[D]. 昆明:昆明理工大学,2015.
[9]张振国,邢振宇,赵敏义,等. 改进YOLOv3的复杂环境下红花丝检测方法[J]. 农业工程学报,2023,39(3):162-170.
[10]龚惟新,杨珍,李凯,等. 基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法[J]. 农业工程学报,2023,39(6):177-185.
[11]顾满局. 基于机器视觉的玫瑰鲜切花花形分类研究[D]. 昆明:昆明理工大学,2023.
[12]REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. Advances in Neural Information Processing Systems,2015,28:91-99.
[13]LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//EUROPEAN CONFERENCE ON COMPUTER VISION. Computer vision-ECCV 2016:14th european conference. Amsterdam,Netherlands:Springer International Publishing,2016.
[14]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// IEEE. 2017 IEEE international conference on computer vision. Venice,Italy:IEEE,2017.
[15]魏天宇,柳天虹,张善文,等. 基于改进YOLOv5s的辣椒采摘机器人识别定位方法[J]. 扬州大学学报(自然科学版),2023,26(1):61-69.
[16]邢洁洁,谢定进,杨然兵,等. 基于YOLOv5s的农田垃圾轻量化检测方法[J]. 农业工程学报,2022,38(19):153-161.
[17]王金鹏,周佳良,张跃跃,等. 基于优选 YOLOv7模型的采摘机器人多姿态火龙果检测系统[J]. 农业工程学报,2023,39(8):276-283.
[18]JIANG T, CHEN S. A lightweight forest pest image recognition model based on improved YOLOv8[J]. Applied Sciences,2024,14(5):1941.
[19]LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE conference on computer vision and pattern recognition. Honolulu,HI,USA:IEEE,2017.
[20]LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//IEEE/CVF. 2018 IEEE/CVF conference on computer vision and pattern recognition. Salt Lake City,UT,USA:IEEE,2018.
[21]杨其晟,李文宽,杨晓峰,等. 改进YOLOv5的苹果花生长状态检测方法[J]. 计算机工程与应用,2022,58(4):237-246.
[22]JIANG Y Q, TAN Z Y, WANG J Y, et al. A heavy-neck paradigm for object detection[C]//INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS. The tenth international conference on learning representations. Vienna,Austria:ICLR,2021.
[23]陈范凯,李士心. 改进Yolov5的无人机目标检测算法[J]. 计算机工程与应用,2023,59(18):218-225.
[24]DING X, ZHANG X, MA N, et al. RepVGG:making vgg-style convnets great again[C]//IEEE/CVF. 2021 IEEE/CVF conference on computer vision and pattern recognition. Nashville,TN,USA:IEEE,2021.
[25]WANG Q, WU B, ZHU P, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF. 2020 IEEE/CVF conference on computer vision and pattern recognition. Seattle,WA,USA:IEEE,2020.
[26]肖粲俊,潘睿志,李超,等. 基于改进YOLOv5s绝缘子缺陷检测技术研究[J]. 电子测量技术,2022,45(24):137-144.
[27]陈超,齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学,2019,46(3):63-73.
[28]LU S, CHEN W, ZHANG X, et al. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture,2022,193:106696.
[29]HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// IEEE/CVF. 2021 IEEE/CVF conference on computer vision and pattern recognition. Nashville,TN,USA:IEEE,2020.

相似文献/References:

[1]李恒,南新元,高丙朋,等.一种基于GhostNet的绿色类圆果实识别方法[J].江苏农业学报,2023,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
 LI Heng,NAN Xin-yuan,GAO Bing-peng,et al.A green round-like fruits identification method based on GhostNet[J].,2023,(08):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
[2]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
 ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(08):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[3]施杰,林双双,张威,等.基于轻量化改进型YOLOv5s的玉米病虫害检测方法[J].江苏农业学报,2024,(03):427.[doi:doi:10.3969/j.issn.1000-4440.2024.03.005]
 SHI Jie,LIN Shuang-shuang,ZHANG Wei,et al.A corn disease and pest detection method based on lightweight improved YOLOv5s[J].,2024,(08):427.[doi:doi:10.3969/j.issn.1000-4440.2024.03.005]

备注/Memo

备注/Memo:
收稿日期:2023-10-09基金项目:国家自然科学基金项目(62173160)作者简介:化春键(1975-),男,北京人,博士,副教授,主要从事机器视觉、图像处理、深度学习等研究。(E-mail)277795559@qq.com
更新日期/Last Update: 2024-09-18