参考文献/References:
[1]彭彦昆,孙晨,赵苗. 苹果品质动态无损感知及分级机器手系统[J]. 农业工程学报,2022,38(16):293-303.
[2]姜宏. 烟台苹果化学成分分析及果实品质的初步评价[D]. 烟台:烟台大学,2014.
[3]孟庆龙,尚静,黄人帅,等. 苹果可溶性固形物的可见/近红外无损检测[J]. 食品与发酵工业,2020,46(16):205-209.
[4]郭志明. 基于近红外光谱及成像的苹果品质无损检测方法和装置研究[D]. 北京:中国农业大学,2015.
[5]樊书祥. 基于可见/近红外光谱及成像技术的苹果可溶性固形物检测研究[D]. 杨凌:西北农林科技大学,2016.
[6]查启明. 基于高光谱成像技术的苹果硬度、水分及可溶性固形物含量的无损检测研究[D]. 南京:南京农业大学,2017.
[7]冯迪. 基于高光谱成像苹果外观与内部多指标检测研究[D]. 沈阳:沈阳农业大学,2017.
[8]SIVAKUMAR S, QIAO J, WANG N, et al. Detecting maturity parameters of mango using hyperspectral imaging technique[C]//ASABE. Annual international meeting of the american society of agricultural and biological engineers. Michigan,USA:ASABE, 2009.
[9]韩如冰. 水果碰伤、糖度和货架期的高光谱成像技术检测[D]. 南昌:华东交通大学,2018.
[10]SANDRA M, CRISTINA B, JOS B, et al. Astringency assessment of persimmon by hyperspectral imaging[J]. Postharvest Biology and Technology,2017,125:35-41.
[11]FERNANDO M, RENFU L, DIWAN A, et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content[J]. Postharvest Biology and Technology,2011,62(2):149-160.
[12]ACQUARELLI J, VAN LAARHOVEN T, GERRETZEN J, et al. Convolutional neural networks for vibrational spectroscopic data analysis[J]. Analytica Chimica Acta,2017,954:22-31.
[13]张保华,黄文倩,李江波,等. 基于高光谱成像技术和MNF检测苹果的轻微损伤[J]. 光谱学与光谱分析,2014,34(5):1367-1372.
[14]KANDPAL L M, LOHUMI S, KIM M S, et al. Near-in-frared hyperspectral imaging system coupled with multivariate methods to predict viabiliy and vigor in muskmelon seeds[J]. Sensors & Actuators B:Chemical,2016,229:534-544.
[15]袁旭林. 基于高光谱成像技术的苹果糖度无损检测系统研究[D]. 济南:山东大学,2021.
[16]刘燕德,吴明明,孙旭东,等. 黄桃表面缺陷和可溶性固形物光谱同时在线检测[J]. 农业工程学报,2016,32(6):289-295.
[17]张金龙. 基于高光谱成像技术检测柿果货架期的研究[D]. 晋中:山西农业大学,2015.
[18]YANG Q, SUN D W, CHENG W W. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process[J]. Journal of Food Engineering,2017,192:53-60.
[19]HE H J, SUN D W. Toward enhancement in prediction of Pseudomonas counts distribution in salmon fillets using NIR hyperspectral imaging[J]. LWT-Food Science and Technology,2015,62(1):11-18.
[20]ARAUJO M C U, SALDANHA T C B, GALVAO R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems,2001,57(2):65-73.
[21]LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta,2009,648 (1):77-84.
[22]CHEN J Y, LI G H. Prediction of moisture content of wood using Modified Random Frog and VIS-NIR hyperspectral imaging[J]. Infrared Physics & Technology,2020,105:103225.
[23]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444.
[24]REICHSTEIN M, CAMPSVALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature,2019,566(7743):195-204.
[25]BI Y, YUAN K, XIAO W, et al. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation[J]. Analytica Chimica Acta,2016,909:30-40.
[26]王立国,赵亮,刘丹凤. SVM在高光谱图像处理中的应用综述[J]. 哈尔滨工程大学学报,2018,39(6):973-983.
[27]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.
[28]ZHANG X L, LIN T, XU J F, et al. DeepSpectra:an end-to-end deep learning approach for quantitative spectral analysis[J]. Analytica Chimica Acta,2019,1058:48-57.
[29]SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE conference on computer vision and pattern recognition (CVPR). Boston,USA:IEEE,2015.
[30]WANG J, WANG J, CHEN Z, et al. Development of multi-cultivar models for predicting the soluble solid content and firmness of European pear (Pyrus communis L.) using portable VIS-NIR spectroscopy[J]. Sensors (Switzerland),2017,129:143-151.
[31]YU X, LU Q. Deep-learning-based regression mode and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napuss L.) leaf[J]. Chemometrics and Intelligent Laboratory Systems,2018,172:188-193.
[32]YU K Q, ZHAO Y R,LIU Z Y, et al. Application of visible and near-infrared hyperspectral imaging for detection of defective features in loquat[J]. Food and Bioprocess Technology,2014,7(11):3077-3087.
[33]孙世鹏,彭俊,李瑞,等. 基于近红外高光谱图像的冬枣损伤早期检测[J]. 食品科学,2017,38(2):301-305.
[34]廉孟茹,张淑娟,任锐,等. 基于高光谱技术的鲜食水果玉米含水率无损检测[J]. 食品与机械,2021,37(9):127-132.
相似文献/References:
[1]张丽颖,冯新新,高晶晶,等.根际浇灌ALA 溶液对苹果叶片生理特性与果实品质的影响[J].江苏农业学报,2015,(01):158.[doi:10.3969/j.issn.1000-4440.2015.01.025]
ZHANG Li-ying,FENG Xin-xin,GAO Jing-jing,et al.Effects of rhizosphere-applied 5-aminolevulinic acid (ALA) solutions on leaf physiological characteristics and fruit quality of apples[J].,2015,(08):158.[doi:10.3969/j.issn.1000-4440.2015.01.025]
[2]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(08):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[3]牛鹏飞,申远,李帅,等.苹果中福美胂残留的RP-HPLC检测[J].江苏农业学报,2018,(03):706.[doi:doi:10.3969/j.issn.1000-4440.2018.03.033]
NIU Peng-fei,SHEN Yuan,LI Shuai,et al.Determination of residual asomate in apple by reversed-phase high-performance liquid chromatography (RP-HPLC)[J].,2018,(08):706.[doi:doi:10.3969/j.issn.1000-4440.2018.03.033]
[4]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(08):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[5]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(08):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[6]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(08):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[7]车金庆,王帆,王艺洁,等.基于视觉注意机制的黄绿色苹果图像分割[J].江苏农业学报,2018,(06):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
CHE Jin-qing,WANG Fan,WANG Yi-jie,et al.A segmentation method of yellow and green apple images based on visual attention mechanism[J].,2018,(08):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
[8]车金庆,王帆,吕继东,等.重叠苹果果实的分离识别方法[J].江苏农业学报,2019,(02):469.[doi:doi:10.3969/j.issn.1000-4440.2019.02.030]
CHE Jin-qing,WANG Fan,LYU Ji-dong,et al.Separation and recognition method for overlapped apple fruits[J].,2019,(08):469.[doi:doi:10.3969/j.issn.1000-4440.2019.02.030]
[9]张永超,赵录怀,王昊,等.基于环境气体信息的BP神经网络苹果贮藏品质预测[J].江苏农业学报,2020,(01):194.[doi:doi:10.3969/j.issn.1000-4440.2020.01.027]
ZHANG Yong-chao,ZHAO Lu-huai,WANG Hao,et al.Prediction of apple storage quality using BP neural network based on environmental gas information[J].,2020,(08):194.[doi:doi:10.3969/j.issn.1000-4440.2020.01.027]
[10]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(08):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]