参考文献/References:
[1]ROMERO H L A J. Climate change 2023:synthesis report. Contribution of working groups Ⅰ,Ⅱ and Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva:IPCC,2023.
[2]KAN Y, MU X R, GAO J, et al. The molecular basis of heat stress responses in plants[J]. Molecular Plant,2023,16(10):1612-1634.
[3]LEE B H, WON S H, LEE H S ,et al. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice[J]. Gene,2000,245(2):283-290.
[4]PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(27):9971-9975.
[5]于玉凤,杨颖慧,潘素君,等. 肌肽对高温胁迫下水稻种子萌发及其生理特性的影响[J/OL]. 分子植物育种,2022:1-12. https://kns.cnki.net/kcms/detail/46.1068.s.20220325.1059.002.html.
[6]余欣,童飞,詹妮,等. 干旱-高温交叉胁迫对水稻幼苗光合特性的影响[J]. 干旱地区农业研究,2022,40(3):72-78.
[7]穰中文,周清明. 水稻高温胁迫的生理响应及耐热机理研究进展[J]. 中国农学通报,2015,31(21):249-258.
[8]张明静,韩笑,胡雪,等. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学,2021,54(7):1537-1352.
[9]周宇娇,张伟杨,杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志,2022(4):1-8.
[10]张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控[D]. 北京:中国农业科学院,2019.
[11]CHEN D, LYU M, KOU X X, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J]. Molecular Cell,2022,82(16):3015-3029.
[12]JUNG J H, BARBOSA A D, HUTIN S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J]. Nature,2020,585(7824):256-260.
[13]MA W, GUAN X, LI J, et al. Mitochondrial small heat shock protein mediates seed germination via thermal sensing[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(10):4716-4721.
[14]LEE G J, ROSEMAN A M, SAIBIL H R, et al. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state[J]. The EMBO Journal,1997,16(3):659-671.
[15]LEE G J, VIERLING E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein[J]. Plant Physiology,2000,122(1):189-197.
[16]EHRNSPERGER M, GRAEBER S, GAESTEL M, et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation[J]. The EMBO Journal,1997,16(2):221-229.
[17]RITOSSA F. A new puffing pattern induced by temperature shock and DNP in drosophila[J]. Experientia,1962,18(12):571-573.
[18]PELHAM H R. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene[J]. Cell,1982,30(2):517-528.
[19]黄祥富,黄上志,傅家瑞,等. 植物热激蛋白的功能及其基因表达的调控[J]. 植物学通报,1999,16(5):530-536.
[20]WATERS E R, VIERLING E. Plant small heat shock proteins - evolutionary and functional diversity[J]. New Phytologist,2020,227(1):24-37.
[21]ZHANG N, JIANG J. Research advances of small heat shock protein gene family (sHSPs) in plants[J]. Plant Physiology Journal,2017,53(6):943-948.
[22]WATERS E R. The evolution,function,structure,and expression of the plant sHSPs[J]. Journal of Experimental Botany,2013,64(2):391-403.
[23]BASHA E, JONES C, BLACKWELL A E, et al. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones[J]. Journal of Molecular Biology,2013,425(10):1683-1696.
[24]BERNFUR K, RUTSDOTTIR G, EMANUELSSON C. The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants[J]. Protein Science,2017,26(9):1773-1784.
[25]JAGADISH S V K, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2010,61(1):143-156.
[26]SCHARF K D, SIDDIQUE M, VIERLING E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)[J]. Cell Stress & Chaperones,2001,6(3):225-237.
[27]SARKAR N K, KIM Y K, GROVER A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. Bmc Genomics,2009,10:393.
[28]YU J H, CHENG Y, FENG K, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses[J]. Frontiers in Plant Science,2016,7:1215.
[29]MUTHUSAMY S K, DALAL M, CHINNUSAMY V, et al. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat[J]. Journal of Plant Physiology,2017,211:100-113.
[30]QI H H, CHEN X K, LUO S, et al. Genome-wide identification and characterization of heat shock protein 20 genes in maize[J]. Life,2022,12(9):1397.
[31]KIM D H, XU Z Y, HWANG I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling[J]. Plant Cell Reports,2013,32(12):1953-1963.
[32]KIM D H, XU Z Y, NA Y J, et al. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis[J]. Plant Physiology,2011,157(1):132-146.
[33]GUAN J C, JINN T L, YEH C H, et al. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)[J]. Plant Molecular Biology,2004,56(5):795-809.
[34]郭虹霞,王创云,赵丽,等. 水稻中2个小分子热激蛋白基因启动子的序列分析及功能鉴定[J]. 西北农业学报,2019,28(7):1079-1086.
[35]SATO Y, YOKOYA S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein,sHSP17.7[J]. Plant Cell Reports,2008,27(2):329-334.
[36]SARKAR N K, KOTAK S, AGARWAL M, et al. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings[J]. Planta,2019,251(1):26.
[37]CHEN X H, LIN S K, LIU Q L, et al. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2014,1844(4):818-828.
[38]缪乐怡,范金岚,詹嘉涛,等. 水稻小分子热激蛋白基因Os02g0782500对逆境胁迫和激素的响应分析[J]. 广东农业科学,2023,50(12):112-119.
[39]SINGH G, SARKAR N K, GROVER A. Hsp70,sHsps and ubiquitin proteins modulate HsfA6a-mediated Hsp101 transcript expression in rice (Oryza sativa L.)[J]. Physiological Plant,2021,173(4):2055-2067.
[40]KIM K H, ALAM I, KIM Y G, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue[J]. Biotechnology Letters,2012,34(2):371-377.
[41]LUND A A, RHOADS D M, LUND A L, et al. In vivo modifications of the maize mitochondrial small heat stress protein,HSP22[J]. Journal of Biological Chemistry,2001,276(32):29924-29929.
[42]SUN W, BERNARD C, COTTE B V D, et al. At-HSP17.6A,encoding a small heat-shock protein in Arabidopsis,can enhance osmotolerance upon overexpression[J]. Plant J,2001,27(5):407-415.
[43]SUN L P, LIU Y, KONG X P, et al. ZmHSP16.9,a cytosolic class I small heat shock protein in maize (Zea mays),confers heat tolerance in transgenic tobacco[J]. Plant Cell Reports,2012,31(8):1473-1484.
[44]CHAUHAN H, KHURANA N, NIJHAVAN A, et al. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant,Cell & Environment,2012,35(11):1912-1931.
[45]SHUKLA V, UPADHYAY R K, TUCKER M L,et al. Transient regulation of three clustered tomato class-I small heat-shock chaperone genes by ethylene is mediated by SlMADS-RIN transcription factor[J]. Scientific Reports,2017,7(1):6474.
[46]KUMAR M, BUSCH W, BIRKE H, et al. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis[J]. Molecular Plant,2009,2(1):152-165.
[47]李春子.烟草细胞质小分子热激蛋白HSP17.8基因的克隆及胁迫诱导表达特性分析[D]. 海口:海南大学,2010.
[48]LIU H C, LIAO H T, CHARNG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant Cell Environment,2011,34(5):738-751.
[49]GONG C, PANG Q Q, LI Z L, et al. Genome-wide identification and characterization of Hsf and Hsp gene families and gene expression analysis under heat stress in eggplant (Solanum melongema L.)[J]. Horticulturae,2021,7(6):149.
[50]CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262.
[51]NOVER L, BHARTI K, DRING P, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones,2001,6(3):177-189.
[52]YOSHIDA T, OHAMA N, NAKAJIMA J, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression[J]. Mol Genet Genomics,2011,286(5/6):321-332.
[53]SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):1014-1019.
[54]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences,2004,29(4):471-487.
[55]YASUDA H, SAGEHASHI Y, SHIMOSAKA E, et al. Generation of transgenic rice expressing heat shock protein genes under cool conditions[J]. Plant Biotechnology,2013,30(5):489-496.
[56]CHENG Q, ZHOU Y H, LIU Z W, et al. An alternatively spliced heat shock transcription factor,OsHSFA2dI,functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology,2015,17(2):419-429.
[57]WU N, YAO Y L, XIANG D H, et al. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice[J]. New Phytologist,2022,234(4):1315-1331.
[58]LI N, XU R, LI Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology,2019,70:435-463.
[59]BASAK J, NITHIN C. Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting[J]. Frontiers in Plant Science,2015,6:1001.
[60]BALAZADEH S. A ‘hot’ cocktail:the multiple layers of thermomemory in plants[J]. Current Opinion in Plant Biology,2022,65:102147.
[61]STIEF A, ALTMANN S, HOFFMANN K, et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell,2014,26(4):1792-1807.
[62]GUAN Q M, LU X Y, ZENG H T, et al. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2013,74 5:840-851.
[63]CHANG C. Ethylene biosynthesis,perception,and response[J]. Journal of Plant Growth Regulation,2007,26(2):89-91.
[64]LIU X L, JI P, YANG H T, et al. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes[J]. Plant Growth Regulation,2022,98(1):23-38.
[65]BI H H, ZHAO Y, LI H H, et al. Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants[J]. International Journal of Molecular Sciences,2020,21(9):3121.
[66]HUANG Y C, NIU C Y, YANG C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology,2016,172(2):1182-1199.
[67]王华丽,陈宁,杜晗蔚,等. 高温胁迫下ABA调控sHSP26对玉米叶绿体的保护作用[J]. 河南农业大学学报,2019,53(6):831-838.
[68]王前前. 玉米热激转录因子ZmHsfA4α的抗旱功能研究[D].合肥:安徽农业大学,2017.
[69]王世威,屈仁军,彭佳铭,等. 丹参小分子热激蛋白SmHSP21.8基因克隆、诱导模式和原核表达[J]. 药学学报,2022,57(6):1909-1917.
[70]SUZUKI N, MILLER G, MORALES J, et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Current Opinion in Plant Biology,2011,14(6):691-699.
[71]KAYA H, TAKEDA S, KOBAYASHI M J, et al. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases[J]. Plant Journal,2019,98(2):291-300.
[72]REZAUL I M, FENG B, CHEN T, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.
[73]SANTIAGO J P, SHARKEY T D. Pollen development at high temperature and role of carbon and nitrogen metabolites[J]. Plant Cell Environment,2019,42(10):2759-2775.
[74]REZAUL I M, BAOHUA F, TINGTING C, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.
[75]HOLLAND C K, JEZ J M. Structural biology of jasmonic acid metabolism and responses in plants[M]. Grenchen:Springer International Publishing,2018:67-82.
[76]DING C K, WANG C Y, GROSS K C, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate[J]. Plant Science,2001,161(6):1153-1159.
[77]HAMILTON E W, COLEMAN J S. Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuata (Solanaceae) when distant leaves are stressed[J]. American Journal of Botany,2001,88(5):950-955.
[78]CLARKE S M, CRISTESCU S M, MIERSCH O, et al. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana[J]. New Phytologist,2009,182(1):175-187.
[79]ZHU T, HERRFURTH C, XIN M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications,2021,12(1):4804.
[80]BAKSHI A, SHEMANSKY J M, CHANG C, et al. History of Research on the plant hormone ethylene[J]. Journal of Plant Growth Regulation,2015,34:809-827.
[81]MATTOO A K, UPADHYAY R K. Plant hormones:some glimpses on biosynthesis,signaling networks,and crosstalk[M]. Singapore:Springer Singapore,2019:227-246.
[82]YANG S F, HOFFMAN N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review of Plant Biology,1984,35:155-189.
[83]KENDE H. Ethylene biosynthesis[J]. Annual Review of Plant Biology,1993,44:283-307.
[84]RAVANEL S, GAKIRE B, JOB D, et al. The specific features of methionine biosynthesis and metabolism in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(13):7805-7812.
[85]UPADHYAY R K, TUCKER M L, MATTOO A K. Ethylene and RIPENING INHIBITOR modulate expression of SlHSP17.7A,B class I small heat shock protein genes during tomato fruit ripening[J]. Frontiers in Plant Science,2020,11:975.
[86]HAN J P, XIE X X, ZHANG Y, et al. Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants[J]. Plant Physiological,2022,190(1):421-440.
[87]YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology,2008,59:225-251.
[88]DU R, NIU S H, LIU Y, et al. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers[J]. Scientific Reports,2017,7(1):16637.
[89]LIU X, HOU X L. Antagonistic regulation of ABA and GA in metabolism and signaling pathways[J]. Front in Plant Science,2018,9:251.
[90]TOH S, IMAMURA A, WATANABE A, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J]. Plant Physiology,2008,146(3):1368-1385.
[91]LUO L X, XIE Y L, YU S J, et al. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa)[J]. New Phytologist,2023,237(6):2163-2179.