[1]高子文,贾智彤,王利晖,等.低共熔溶剂提取绿茶中茶多酚工艺优化及茶多酚提取液的抗氧化活性分析[J].江苏农业学报,2024,(07):1330-1342.[doi:doi:10.3969/j.issn.1000-4440.2024.07.020]
 GAO Ziwen,JIA Zhitong,WANG Lihui,et al.Process optimization of tea polyphenols extraction from green tea by deep eutectic solvents and analysis of antioxidant activity[J].,2024,(07):1330-1342.[doi:doi:10.3969/j.issn.1000-4440.2024.07.020]
点击复制

低共熔溶剂提取绿茶中茶多酚工艺优化及茶多酚提取液的抗氧化活性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年07期
页码:
1330-1342
栏目:
加工贮藏·质量安全
出版日期:
2024-07-30

文章信息/Info

Title:
Process optimization of tea polyphenols extraction from green tea by deep eutectic solvents and analysis of antioxidant activity
作者:
高子文贾智彤王利晖刘羽妍谢子菁刘洋滕杰
(江西农业大学农学院,江西南昌330045)
Author(s):
GAO ZiwenJIA ZhitongWANG LihuiLIU YuyanXIE ZijingLIU YangTENG Jie
(School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China)
关键词:
低共熔溶剂茶多酚提取工艺响应面法抗氧化活性
Keywords:
deep eutectic solvents (DES)tea polyphenolsextraction technologyresponse surface methodologyantioxidant activity
分类号:
S571.1
DOI:
doi:10.3969/j.issn.1000-4440.2024.07.020
文献标志码:
A
摘要:
低共熔溶剂(Deep eutectic solvents,DES)作为一种绿色环保、高效无毒溶剂而被广泛应用在生物提取和化学制备领域。本研究拟采用DES提取绿茶中多酚类物质,首先合成5种不同类型的DES,进行傅里叶变换红外光谱(FT-IR)与黏度值的物理表征,并与以传统水溶液、70%甲醇作为溶剂所得茶多酚提取率进行比较,获得最佳DES类型。然后,通过单因素试验、响应面Box-Behnken设计试验优化用DES提取绿茶中茶多酚的工艺,并对提取前后的绿茶粉进行结构分析。结果显示,在提取过程中,当氯化胆碱与乳酸(DES-2)的含水率为30%、提取温度为75 ℃、提取时间29 min、料液比为1 g∶35 mL时,茶多酚提取率达25.16%,与模型预测结果相符。扫描电子显微镜(SEM)和X射线衍射(XRD)结果显示,在提取过程中茶粉的晶体结构无明显变化,但DES使茶粉表面形貌发生改变,使褶皱面增多,从而使茶粉与溶剂有更多接触面积,有利于多酚类物质的溶出。此外,将DES提取法与常用的超声波乙醇提取法、微波水提取法、热回流水提取法的结果进行比较发现,DES提取法在茶多酚提取率、部分儿茶素组分提取率上均具有显著优势(P<0.05)。用不同提取方法所得茶多酚提取液进行体外还原能力、1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除活性试验,发现不同方法所得茶多酚提取液均表现出抗氧化活性并且其抗氧化活性呈现剂量依赖关系,以DES法获得的茶多酚提取液的抗氧化性最强,研究结果可为茶多酚提取及开发利用提供理论依据。
Abstract:
Deep eutectic solvents (DES) are widely used in biological and chemical fields as green, environmentally friendly, non-toxic and highly efficient solvents. In this study, deep eutectic solvents were used to extract polyphenols from green tea. Firstly, five different types of natural deep eutectic solvents were synthesized, and physical properties such as Fourier transform infrared spectroscopy (FT-IR) and viscosity values were characterized. Compared with extraction rates of tea polyphenols obtaining by using traditional water solution and 70% methanol organic solvent, the best DES type was acquired. Then, the single factor test and response surface Box-Behnken design test were used to optimize the extraction of green tea polyphenols based on DES, and the structure of green tea powder before and after extraction was analyzed. The results showed that when the moisture content of choline chloride and lactic acid (DES-2) was 30%, extraction temperature was 75 ℃, extraction time was 29 min, and solid-liquid ratio was 1∶35 (g/mL), the extraction rate of tea polyphenols was 25.16%, which was consistent with the prediction of the model. The results of scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that the crystal structure of tea powder did not change significantly during the extraction process, but the surface morphology of tea powder was changed greatly by DES, and more folds were formed on the surface of the tea powder, so that the tea powder had a larger contact area with the solvent, which was conducive to the dissolution of polyphenols. In addition, the DES extraction method was compared with the commonly used ultrasonic ethanol extraction method, microwave water extraction method, and hot reflux water extraction method. It was found that the DES extraction method had significant advantages in the extraction rates of tea polyphenols and some catechin components (P<0.05). The tea polyphenol extracts obtained by different extraction methods were tested for in vitro reducing power and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. It was found that the tea polyphenol extracts obtained by different methods showed antioxidant activity and the antioxidant activity was dose-dependent. The tea polyphenol extract obtained by DES method had the strongest antioxidant activity. The results of this study can provide a theoretical basis for the extraction and development of tea polyphenols.

参考文献/References:

[1]旷春桃,李湘洲,汪玉霞,等. 大叶冬青叶中总黄酮测定方法和提取工艺研究[J]. 食品科学,2009,30(6):49-51.
[2]HONG M Y, YU J, WANG X P, et al. Tea polyphenols as prospective natural attenuators of brain aging[J]. Nutrients,2022,14(15):3012.
[3]李振,张秀玲,张文涛,等. 1-甲基环丙烯熏蒸结合茶多酚涂膜处理对蕨菜保鲜效果的影响[J]. 食品科学,2021,42(19):218-225.
[4]张志勇,李婷,朱慧芳,等. 茶多酚调节肠道菌群及抗肥胖作用研究进展[J]. 食品安全质量检测学报,2023,14(2):161-167.
[5]林德,吴宁俊,刘五高,等. 亚抑菌浓度茶多酚对肺炎克雷伯菌的影响[J]. 中国消毒学杂志,2023,40(1):18-20.
[6]李光达,王婧,许晶,等. 基于免疫调节探讨茶多酚及表没食子儿茶素没食子酸酯的抗肿瘤机制[J]. 中国药房,2022,33(24):3067-3072.
[7]WANG M, YANG X T, GAO Y L, et al. Computer-aided screening and revealing action mechanism of green tea polyphenols intervention in Alzheimer’s disease[J]. Foods,2023,12(3):635.
[8]ZHANG X N, LI J, LI Y H, et al. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG),epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB/MITF signaling pathway in B16F10 melanoma cells[J]. Fitoterapia,2020,145:104634.
[9]王玉春. 茶多酚的提取方法及应用研究进展[J]. 甘肃联合大学学报(自然科学版),2008,22(3):51-55.
[10]胡玲玲,张超霞,韩丽丽,等. 沉淀法提取茶叶废料中茶多酚的工艺研究[J]. 广州化工,2011,39(11):64-65.
[11]宋传奎,肖斌,王艳丽,等. 超声波辅助提取茶多酚工艺条件的优化[J]. 西北农林科技大学学报(自然科学版),2011,39(5):133-139,146.
[12]宣婧婧,武喜营,戚建平,等. 天然低共熔溶剂在药剂学中的应用[J]. 药学学报,2021,56(1):146-157.
[13]屠羽佳,李林楠,范文翔,等. 基于机械化学辅助-低共熔溶剂的人参皂苷绿色提取新方法研究[J]. 中国中药杂志,2022,47(23):6409-6416.
[14]冯智翱,杨丹,薄彧坤,等. 天然低共熔溶剂提取栀子中活性成分的工艺研究[J]. 现代化工,2022,42(增刊2):258-262,268.
[15]王晓艺,李培坤,李锦红,等. 超声辅助低共熔溶剂提取玫瑰多酚及其抗氧化活性[J]. 食品研究与开发,2022,43(8):98-105.
[16]古丽菲热·伊力哈木,马梦亚,艾斯卡尔·吐尔逊,等. 超声辅助低共熔溶剂法提取新疆大果沙枣多酚类化合物及其抗氧化活性研究[J]. 食品与发酵工业,2023,49(18):186-194.
[17]倪玉娇,赵春建,李春英,等. 超声辅助低共熔溶剂提取沙棘籽粕多酚的工艺优化[J]. 植物研究,2017,37(3):474-480.
[18]汪涛,梁亮,李旭锐,等. 低共熔溶剂提取核桃青皮多酚工艺优化及其抑菌活性[J]. 农业工程学报,2021,37(5):317-323.
[19]NKHILI E, TOMAO V, EL HAJJI H, et al. Microwave-assisted water extraction of green tea polyphenols[J]. Phytochemical Analysis,2009,20(5):408-415.
[20]都昌乐,杨紫雨,陈贝言,等. 超声波辅助乙醇提取茶多酚工艺的正交优化研究[J]. 安徽理工大学学报(自然科学版),2022,42(4):29-34.
[21]蒋丽,王雪梅,全学军,等. 不同提取方法对茶多酚理化性质的影响[J]. 食品科学,2010,31(14):136-139.
[22]杨春妹,李志明,范先婷,等. 福林酚比色法测定海藻多酚的反应条件优化[J]. 江苏农业学报,2023,39(1):238-245.
[23]程爽,贺斐,付龙洋,等. 冬凌草硒多糖的制备及其抗氧化活性分析[J]. 精细化工,2021,38(10):2064-2071.
[24]阮怿航,吴亮宇,鲁静,等. 低共熔溶液提取铁观音茶多酚工艺的响应面法优化[J]. 福建农业学报,2020,35(2):217-225.
[25]唐超凡. 氯化胆碱低共熔溶剂理化性质及其在预处理纤维素和黄酮提取应用中的研究[D]. 镇江:江苏大学,2021.
[26]张欢欢,刘玉婷,李戎,等. 新型低共熔溶剂的制备、表征及物性研究[J]. 化学通报,2015,78(1):73-79.
[27]DAI Y T, WITKAMP G J, VERPOORTE R, et al. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications[J]. Food Chemistry,2015,187:14-19.
[28]FU X Z, BELWAL T, HE Y H, et al. UPLC-Triple-TOF/MS characterization of phenolic constituents and the influence of natural deep eutectic solvents on extraction of Carya cathayensis Sarg. peels:composition,extraction mechanism and in vitro biological activities[J]. Food Chemistry,2022,370:131042.
[29]ZHANG G W, HU M M, HE L, et al. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro[J]. Food and Bioproducts Processing,2013,91(2):158-168.
[30]MANSUR A R, SONG N E, JANG H W, et al. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts[J]. Food Chemistry,2019,293:438-445.
[31]赵敏,战祥,徐茜,等. 响应面法优化五倍子多酚的提取工艺[J]. 湖北大学学报(自然科学版),2023,45(2):294-300.
[32]黄文睿,唐超凡,陶雨峰,等. 绿色低共熔溶剂提取野菊花中黄酮类化合物[J]. 精细化工,2022,39(3):569-576.
[33]FU X Z, WANG D, BELWAL T, et al. Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace[J]. LWT,2021,144:111220.
[34]李海飞,杨毅,亓雨芮,等. 超声波辅助酸性天然低共熔溶剂提取黑果腺肋花楸花青素及其稳定性和抗氧化活性分析[J]. 食品工业科技,2023,44(8):259-269.

相似文献/References:

[1]贾洋洋,刘小莉,胡彦新,等.茶多酚对白鱼脂肪分解氧化的抑制作用[J].江苏农业学报,2016,(01):216.[doi:10.3969/j.issn.1000-4440.2016.01.034 ]
 JIA Yang-yang,LIU Xiao-li,HU Yan-xin,et al.Inhibitory activity of tea polyphenols against lipolysis and lipid oxidation in white fish[J].,2016,(07):216.[doi:10.3969/j.issn.1000-4440.2016.01.034 ]

备注/Memo

备注/Memo:
收稿日期:2023-08-31基金项目:国家级大学生创新创业项目(202310410001);国家自然科学基金项目 (32260791)作者简介:高子文(2001-),女,江西新余人,硕士研究生,主要研究方向为茶叶深加工。(E-mail) ziwen_G423@163.com通讯作者:滕杰,(E-mail)tengjie@jxau.edu.cn
更新日期/Last Update: 2024-09-14