[1]谢雅晶,杨立应,胡晓丹,等.小菜蛾杀虫抗体的对靶设计及验证[J].江苏农业学报,2024,(07):1212-1219.[doi:doi:10.3969/j.issn.1000-4440.2024.07.007]
 XIE Yajing,YANG Liying,HU Xiaodan,et al.Target design and verification of insecticidal antibody against Plutella xylostella[J].,2024,(07):1212-1219.[doi:doi:10.3969/j.issn.1000-4440.2024.07.007]
点击复制

小菜蛾杀虫抗体的对靶设计及验证()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年07期
页码:
1212-1219
栏目:
植物保护
出版日期:
2024-07-30

文章信息/Info

Title:
Target design and verification of insecticidal antibody against Plutella xylostella
作者:
谢雅晶12杨立应1胡晓丹3徐重新12张霄2高美静2卢莉娜2仲建锋2
(1.江苏大学食品与生物工程学院,江苏镇江212013;2.江苏省食品质量安全重点实验室-省部共建国家重点实验室培育基地/农业农村部农产品质量安全控制技术与标准重点实验室/农业农村部农产品质量安全风险评估实验室<南京>/江苏省农业科学院农产品质量安全与营养研究所,江苏南京210014;3.江苏农林职业技术学院,江苏镇江212400)
Author(s):
XIE Yajing12YANG Liying1HU Xiaodan3XU Chongxin12ZHANG Xiao2GAO Meijing2LU Lina2ZHONG Jianfeng2
(1.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2.Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base of Ministry of Science and Technology/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China)
关键词:
对靶设计杀虫基因工程抗体分子对接小菜蛾Cry毒素
Keywords:
target designinsecticidal genetically engineered antibodymolecular dockingPlutella xylostellaCry toxin
分类号:
Q816
DOI:
doi:10.3969/j.issn.1000-4440.2024.07.007
文献标志码:
A
摘要:
本研究拟通过模拟Cry毒素创制新型杀虫蛋白质用于小菜蛾防治,主要利用三维结构模拟及分子对接技术,以前期获得的抗Cry1Ab抗体为模板设计2个基因工程抗体(GEAb)。其中,具有杀虫活性的GEAb-GGCC与小菜蛾中肠刷状边缘膜囊泡(BBMV)具有较高结合活性,并与Cry1A和Cry1B具有重叠的BBMV结合位点。BBMV免疫沉淀分析鉴定结果显示,与GEAb-GGCC结合的中肠蛋白质包括氨肽酶N(APN)、V-ATP酶B亚基和polycalin。由于GEAb-GGCC缺乏Cry1A类蛋白质中负责成孔的α-螺旋结构,推测GEAb-GGCC或通过结合小菜蛾中肠受体激活下游信号通路,引起中肠损伤,导致虫体死亡。
Abstract:
To generate new insecticidal proteins against Plutella xylostella by mimicking Cry toxins, two genetically engineered antibodies (GEAb) were designed by using previously obtained anti-Cry1Ab idiotypic-antibody as template, mainly by three-dimensional structure modeling and molecular docking technology. The insecticidal GEAb-GGCC of GEAb was found to show high affinity to P. xylostella brush border membrane vesicles (BBMV), and had superposed BBMV binding sites with Cry1A and Cry1B. Identification results of BBMV immunoprecipitation analysis showed that the midgut proteins bonded with GEAb-GGCC included aminopeptidases N (APN), B subunit of V-ATPase and polycalin. Because the GEAb-GGCC is lack of α-helix structure which is responsible for pore forming in Cry1A proteins, it is speculated that GEAb-GGCC may activate the downstream signal pathway by binding with the midgut receptors to cause midgut injury, which leads to the death of P. xylostella larva.

参考文献/References:

[1]FIUZA L, POLANCZYK R, CRICKMORE N. Bacillus thuringiensis and Lysinibacillus sphaericus[M]. Switerland:Springer, Cham,2017.
[2]TABASHNIK B E, CARRIèRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017,35(10):926-935.
[3]GUPTA R D, GOLDSMITH M, ASHANI Y, et al. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication[J]. Nature Chemical Biology,2011,7(2):120-125.
[4]WILLIAMS G J, ZHANG C, THORSON J S. Expanding the promiscuity of a natural product glycolsyl-transferase by directed evolution[J]. Nature Chemical Biology,2007,3(10):657-662.
[5]BADRAN A H, GUZOV V M, HUAI Q, et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance[J]. Nature,2016,533:58-63.
[6]LEE C C, PERCHIACCA J M, TESSIER P M. Toward aggregation-resistant antibodies by design[J]. Trends in Biotechnology,2013,31(11):612-620.
[7]吴梧桐. 蛋白质工程技术与新型生物催化剂设计[J]. 药物生物技术,2004,11(1):1-6.
[8]TINBERG C E, KHARE S D, DOU J, et al. Computational design of ligand-binding proteins with high affinity and selectivity[J]. Nature,2013,501(7466): 212-216.
[9]LI Z, ZALUCKI M P, YONOW T, et al. Population dynamics and management of diamondback moth(Plutella xylostella) in China: the relative contributions of climate, natural enemies and cropping patterns [J]. Bulletin of Entomological Research,2016,106(2):197-214.
[10]FURLONG M J, WRIGHT D J, DOSDALL L M. Diamondback moth ecology and management: pro-blems, progress, and prospects [J]. Annual Review of Entomology,2013,58:517-541.
[11]JURAT-FUENTES L, HECKEL F. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis[J]. Annual Review of Entomology,2021,66:121-140.
[12]GUO Z, KANG S, SUN D, et al. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host[J]. Nature Communication,2020,11:3003.
[13]ZHU X, MITCHELL J C. KFC2:a knowledge-based hot spot prediction method based on interface solvation, atomic density and plasticity features[J]. Proteins,2011,79:2671-2683.
[14]XIE Y J, XU C X, GAO M J, et al. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth(Plutella xylostella) [J]. Pest Management Science,2021,77(10):4593-4606.
[15]CHEN X J, CURTISS A, ALCANTARA E, et al. Mutations in domain I of Bacillus thuringiensis d-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles[J]. Journal of Biological Chemistry,1995,270:6412-6419.
[16]WU D, ARONSON A I. Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity[J]. Journal of Biological Chemistry,1992,267:2311-2317.

备注/Memo

备注/Memo:
收稿日期:2023-06-30基金项目:国家自然科学基金青年基金项目(31301703);江苏省农业科技自主创新基金项目[CX(22)1009];江苏现代农业产业技术体系建设专项[JATS(2023)403];江苏省自然科学基金面上项目(BK20231384)作者简介:谢雅晶(1983-),女,江苏南京人,硕士,副研究员,硕士生导师,研究方向为农产品质量安全控制。(E-mail)maria_xie@163.com通讯作者:刘贤金,(E-mail)jaasliu@163.com
更新日期/Last Update: 2024-09-14