[1]章慧敏,张舒钰,宋旭东,等.糯玉米茎秆穿刺强度QTL分析与基因组选择[J].江苏农业学报,2024,(07):1191-1198.[doi:doi:10.3969/j.issn.1000-4440.2024.07.005]
 ZHANG Huimin,ZHANG Shuyu,SONG Xudong,et al.QTL analysis and genomic selection of rind penetrometer resistance in waxy maize[J].,2024,(07):1191-1198.[doi:doi:10.3969/j.issn.1000-4440.2024.07.005]
点击复制

糯玉米茎秆穿刺强度QTL分析与基因组选择()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年07期
页码:
1191-1198
栏目:
遗传育种·生理生化
出版日期:
2024-07-30

文章信息/Info

Title:
QTL analysis and genomic selection of rind penetrometer resistance in waxy maize
作者:
章慧敏1张舒钰1宋旭东1张振良1陆虎华1陈国清12郝德荣1冒宇翔1
(1.江苏沿江地区农业科学研究所,江苏南通226012;2.江苏省现代作物生产协同创新中心,江苏南京210095)
Author(s):
ZHANG Huimin1ZHANG Shuyu1SONG Xudong1ZHANG Zhenliang1LU Huhua1CHEN Guoqing12HAO Derong1MAO Yuxiang1
(1.Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China;2.Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing 210095, China)
关键词:
糯玉米茎秆穿刺强度数量性状位点基因组选择
Keywords:
waxy maizerind penetrometer resistanceQTL(quantitative trait locus)genomic selection
分类号:
S513
DOI:
doi:10.3969/j.issn.1000-4440.2024.07.005
文献标志码:
A
摘要:
茎秆穿刺强度是衡量玉米茎秆机械强度和抗倒伏能力的重要指标之一,本研究以衍生于糯玉米自交系衡白522和通系5的198个重组自交系为试验材料,对茎秆穿刺强度进行数量性状位点(QTL)分析和基因组选择研究。单个环境QTL分析共检测到4个控制糯玉米茎秆穿刺强度的QTL,每个QTL的表型变异贡献率均小于10.00%,且仅在单个环境中被检测到;多个环境QTL分析共检测到8个QTL与环境互作,其加性效应总共可解释24.64%的表型变异,加性效应与环境互作贡献率为17.51%;上位性QTL分析共检测到4对QTL与QTL互作,可解释8.25%的表型变异。基因组选择中,当训练群体占群体总数的80%,随机选择500个标记即可获得较高的预测准确性;但是根据单个环境QTL分析结果,选择机率常用对数值排名前200的标记,即可大幅度提高基因组选择预测准确性。
Abstract:
Rind penetrometer resistance (RPR) is an important index that can be used to measure mechanical strength and lodging-resistance capability of maize stalk. In this study, a total of 198 recombinant inbred lines developed from waxy maize inbred lines Hengbai 522 and Tongxi 5 were used as test materials to perform quantitative trait locus (QTL) analysis and genomic selection (GS) study of RPR. Four QTLs for waxy maize PRP were detected by individual environmental QTL analysis, and contribution rate of phenotypic variation for each QTL was below 10.00% and was detected only in individual environment. Eight QTLs were detected to interact with the environment by multiple environmental QTL analysis, the additive effect could explain a total of 24.64% phenotypic variations, and the contribution rate of interaction between additive QTL and environment was 17.51%. Four pairs of QTL-QTL interactions were detected by epistatic QTL analysis, which could explain 8.25% of the phenotypic variation. In GS, when the training population size occupied 80% of the total population size, a relatively high prediction accuracy could be obtained by selecting 500 markers randomly. However, the genome selection prediction accuracy could be significantly improved by using top 200 markers for logarithm of odds values based on QTL analysis results of individual environmental.

参考文献/References:

[1]FLINT-GARCIA S A, JAMPATONG C, DARRAH L L, et al. Quantitative trait locus analysis of stalk strength in four maize populations[J]. Crop Science,2003,43(1):13-22.
[2]KAMRAN M, CUI W, AHMAD I, et al. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize[J]. Plant Growth Regulation,2018,84(2):317-332.
[3]丰光,黄长玲,邢锦丰. 玉米抗倒伏的研究进展[J]. 作物杂志,2008(4):12-14.
[4]王夏青,宋伟,张如养,等. 玉米茎秆抗倒伏遗传的研究进展[J]. 中国农业科学,2021,54(11):2261-2272.
[5]PEIFFER J A, FLINT-GARCIA S A, DE LEON N, et al. The genetic architecture of maize stalk strength[J]. PLoS One,2013,8(6):e67066.
[6]LI K, YAN J B, LI J S, et al. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations[J]. BMC Plant Biology,2014,14:152.
[7]ZHANG Y L, LIU P, ZHANG X X, et al. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize[J]. Frontiers in Plant Science,2018,9:611.
[8]ZHANG Z H, ZHANG X, LIN Z L, et al. A large transposon insertion in the stiff1 promoter increases stalk strength in maize[J]. The Plant Cell,2020,32(1):152-165.
[9]XU S H, TANG X, ZHANG X M, et al. Genome-wide association study identifies novel candidate loci or genes affecting stalk strength in maize[J]. The Crop Journal,2023,11(1):220-227.
[10]NAKAYA A, ISOBE S N. Will genomic selection be a practical method for plant breeding?[J]. Annals of Botany,2012,110(6):1303-1316.
[11]MEUWISSEN T H E, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense markers maps[J]. Genetics,2001,157:1819-1829.
[12]LIU X G, HU X J, LI K, et al. Genetic mapping and genomic selection for maize stalk strength[J]. BMC Plant Biology,2020,20(1):196.
[13]赵久然,卢柏山,史亚兴,等. 我国糯玉米育种及产业发展动态[J]. 玉米科学,2016,24(4):67-71.
[14]HAO D R, XUE L, YUAN J H, et al. Genetic dissection of starch paste viscosity characteristics in waxy maize revealed by high-density SNPs in a recombinant inbred line population[J]. Molecular Breeding,2017,37:50.
[15]BATES D, MCHLER M, BOLKER B, et al. Fitting linear mixed-effects models using lme4[J]. Journal of Statistical Software,2014,67:1-48.
[16]KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis1[J]. Crop Science,1985,25:192-194.
[17]MENG L H, LI H, ZHANG L Y, et al. QTL iciMapping:integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal,2015,3(3):269-283.
[18]ENDELMAN J B. Ridge regression and other kernels for genomic selection with R package rrBLUP[J]. The Plant Genome,2011,4(3):250-255.
[19]CROSSA J, PEREZ P, HICKEY J, et al. Genomic prediction in CIMMYT maize and wheat breeding programs[J]. Heredity (Edinb),2014,112(1):48-60.
[20]ZHOU G F, MAO Y X, XUE L, et al. Genetic dissection of husk number and length across multiple environments and fine-mapping of a major-effect QTL for husk number in maize (Zea mays L.)[J]. The Crop Journal,2020,8(6):1071-1080.
[21]MENG Y J, LI J H, LIU J J, et al. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize[J]. BMC Plant Biol,2016,16:50.
[22]HU H X, MENG Y J, WANG H W, et al. Identifying quantitative trait loci and determining closely related stalk traits for rind penetrometer resistance in a high-oil maize population[J]. Theoretical and Applied Genetics,2012,124(8):1439-1447.
[23]LI Z K, YU S B, LAFITTE H R, et al. QTL x environment interactions in rice. I. heading date and plant height[J]. Theoretical and Applied Genetics,2003,108(1):141-153.
[24]JANSEN R C, VAN OOIJEN J W, STAM P, et al. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci[J]. Theoretical and Applied Genetics,1995,91:33-37.
[25]BATESON W. The progress of genetics since the rediscovery of Mendel’s papers[J]. Progress Rei Botanicae,1906,1:368.
[26]XU Y B, LIU X G, FU J J, et al. Enhancing genetic gain through genomic selection:from livestock to plants[J]. Plant Communication,2020,1(1):100005.
[27]GUO R, DHLIWAYO T, MAGETO E K, et al. Genomic prediction of kernel zinc concentration in multiple maize populations using genotyping-by-sequencing and repeat amplification sequencing markers[J]. Frontiers in Plant Science,2020,11:534.
[28]LIU X G, WANG H W, WANG H, et al. Factors affecting genomic selection revealed by empirical evidence in maize[J]. The Crop Journal,2018,6(4):341-352.
[29]周广飞,高夕全. 玉米禾谷镰孢菌穗腐病抗性基因组选择研究[J]. 江苏农业科学,2023,51(14):65-70.
[30]许加波,吴鹏昊,黄博文,等. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报,2023,49(3):622-633.
[31]LIU L, DU Y F, HUO D A, et al. Genetic architecture of maize kernel row number and whole genome prediction[J]. Theoretical and Applied Genetics,2015,128(11):2243-2254.

相似文献/References:

[1]胡俏强,陆海燕,李炯,等.糯玉米杂交种纯度InDel分子标记鉴定与田间鉴定的相关性分析[J].江苏农业学报,2016,(05):999.[doi:10.3969/j.issn.1000-4440.2016.05.007]
 HU Qiao-qiang,LU Hai-yan,LI Jiong,et al.The relativity between InDel method and field test in purity identification of waxy maize hybrids[J].,2016,(07):999.[doi:10.3969/j.issn.1000-4440.2016.05.007]
[2]伊祖涛,张海艳.糯玉米胚乳发育过程中淀粉粒粒度分布的变化[J].江苏农业学报,2015,(04):743.[doi:10.3969/j.issn.1000-4440.2015.04.006]
 YI Zu-tao,ZHANG Hai-yan.Change of starch granule size distribution during endosperm development in waxy corn[J].,2015,(07):743.[doi:10.3969/j.issn.1000-4440.2015.04.006]
[3]王军,李洪涛,许瀚元,等.糯玉米茎秆穿刺强度的遗传模型分析[J].江苏农业学报,2016,(04):752.[doi:10.3969/j.issn.100-4440.2016.04.006]
 WANG Jun,LI Hong-tao,XU Han-yuan,et al.Analysis of inheritance model for rind penetrometer resistance in waxy maize[J].,2016,(07):752.[doi:10.3969/j.issn.100-4440.2016.04.006]

备注/Memo

备注/Memo:
收稿日期:2023-08-11基金项目:江苏省科协青年科技人才托举工程项目(TJ-2023-052);江苏省种业振兴揭榜挂帅项目(JBGS
[2021]054);江苏省农业科技自主创新基金项目[CX(23)1043];江苏省重点研发计划项目(BE2022343);江苏现代农业产业技术体系建设专项作者简介:章慧敏(1993-),女,安徽铜陵人,硕士,助理研究员,主要从事糯玉米遗传育种研究。(E-mail)2240114725@qq.com通讯作者:周广飞,(E-mail)gfzhou88@jaas.ac.cn
更新日期/Last Update: 2024-09-14