参考文献/References:
[1]刘成,冯中朝,肖唐华,等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报,2019,41(4):485-489.
[2]YILDIZ M, AKALI N, TERZI H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid[J]. Journal of Plant Physiology,2015,179:90-99.
[3]李加纳,邱厥,唐章林,等. 甘蓝型油菜主要产量和品质性状的相关分析[J].中国油料,1990(1):11-16.
[4]ZHANG Y F, WU Y Q, CHEN S R, et al. Flavor of rapeseed oil:an overview of odorants, analytical techniques, and impact oftreatment[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3983-4018.
[5]熊秋芳,张效明,文静,等. 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良[J]. 中国粮油学报,2014,29(6):122-128.
[6]SAEID N, YOUSEF S, PARVIZ M. Effects of exogenous application of 24-epibrassinolide on photosynthesis parameters, grain yield, and protein of dragon’s head (Lallemantia iberica) under drought stress conditions[J]. Journal of Plant Growth Regulation,2023,42(7):4453-4465.
[7]王骏,蒋荣兵. 全球三大植物油期货市场国际关联性研究[J]. 南京农业大学学报(社会科学版),2008,8(3):30-37.
[8]JABBARI H, AKBARI G A, SIMA N A K K, et al. Relationships between seedling establishment and soil moisture content for winter and spring rapeseed genotypes[J]. Industrial Crops & Products,2013,49:177-187.
[9]BIJAY S, ANJU P, SAMIKSHYA A. The impact of climate change on insect pest biology and ecology:implications for pest management strategies, crop production, and food security[J]. Journal of Agriculture and Food Research,2023,14:10733-10750.
[10]SHANMUGAM G. 200 Years of fossil fuels and climate change (1900-2100)[J]. Journal of the Geological Society of India,2023,99(8):1043-1062.
[11]武军艳,方彦,刘翠平,等. 旱寒区冬油菜苗期抗寒性与抗旱性相关性分析[J]. 干旱地区农业研究,2014,32(2):142-146.
[12]KUNST L, SAMUELS L. Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology,2009,12(6):721-727.
[13]JETTER R, KUNST L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels[J]. The Plant Journal,2008,54(4):670-683.
[14]OHLROGGE J, BROWSE J. Lipid biosynthesis[J]. Plant Cell,1995,7(7):957-970.
[15]WETTSTEIN-KNOWLES P V. Biosynthesis of epicuticular lipids as analyzed with the aid of gene mutations in barley[M]. WINTERMANS J F G M, KUIPER P J C. Biochemistry and Metabolism of Plant Lipids. Amsterdam:Elsevier Biomedical Press,1982.
[16]KUNST L, SAMUELS A L. Biosynthesis and secretion of plant cuticular wax[J]. Progress in Lipid Research,2003,42(1):51-80.
[17]ZHENG H Q, ROWLAND O, KUNST L. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis[J]. The Plant Cell,2005,17(5):1467-1481.
[18]SAMUELS L, KUNST L, JETTER R. Sealing plant surfaces:cuticular wax formation by epidermal cells[J]. Annual Review of Plant Biology,2008,59(1):683-707.
[19]胡晓君,张正斌,刘文,等. 植物表皮蜡质及极长链脂肪酸类物质的研究进展[J]. 安徽农业科学,2013,41(12):5176-5185.
[20]MCNEVIN J P, WOODWARD W, HANNOUFA A, et al. Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana[J]. Genome,1993,36(3):610-618.
[21]HANNOUFA A, MCNEVIN J, LEMIEUX B. Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana[J]. Phytochemistry,1993,33(4):851-855.
[22]BERNARD A, JOUBS J M. Arabidopsis cuticular waxes: advances in synthesis, export and regulation[J]. Progress in Lipid Research,2013,52(1):110-129.
[23]BERNARD A, DOMERGUE F, PASCAL S, et al. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex[J]. Plant Cell,2012,24(7):3106-3118.
[24]LI F, WU X, LAM P, et al. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis[J]. Plant Physiology,2008,148(1):97-107.
[25]赵鸿,蔡迪花,王鹤龄,等. 干旱灾害对粮食安全的影响及其应对技术研究进展与展望[J]. 干旱气象,2023,41(2):187-206.
[26]李佳,刘涛,马菊莲,等. 烟草响应干旱胁迫与抗旱遗传育种研究进展[J]. 江苏农业科学,2023,51(8):34-43.
[27]吕婧妤,徐超,刘昱君,等. 基于模拟优化模型的干旱风沙草原区水-粮食-能源关系[J]. 排灌机械工程学报,2023,41(3):296-304.
[28]樊玉春,李玥,魏霖静,等. 三种胡麻生长模型对现蕾期和青果期干旱胁迫响应能力的比较[J]. 江苏农业学报,2023,39(2):423-433.
[29]徐存东,胡小萌,刘子金,等. 干旱区人工绿洲水土资源承载状态演变分析[J]. 排灌机械工程学报,2023,41(1):62-69.
[30]周旭旭,刘金洋,陈新,等. 绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J]. 江苏农业学报,2022,38(5):1179-1187.
[31]周苗,景秀,蔡嘉鑫,等. 灌浆前期高温干旱复合胁迫对优质食味粳稻产量与穗后物质生产特征的影响[J]. 南方农业学报,2022,53(12):3357-3368.
[32]MUN J H, KWON S J, YANG T J, et al. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication[J]. Genome Biology,2009,10(10):R111.
[33]XU Z, PU X, GAO R, et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants[J]. BMC Biology,2020,18(1):63-77.
[34]KING A, NAM J W, HAN J, et al. Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters[J]. Planta,2007,226(2):381-394.
[35]周彬. 苹果蜡酯合酶MdWSDs基因家族的鉴定及表达特性研究[D]. 杨凌:西北农林科技大学,2018.
[36]TOMIYAMA T, KURIHARA K, OGAWA T, et al. Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis[J]. Scientific Reports,2017,7:13504.
[37]KALSCHEUER R, STEINBCHEL A. A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1[J]. Journal of Biological Chemistry,2003,278(10):8075-8082.
[38]MA H Y, ZHENG J, LI Y H, et al. A novel bifunctional wax ester synthase involved in early triacylglycerol accumulation in unicellular green microalga Haematococcus pluvialis under high light stress[J]. Frontiers in Bioengineering and Biotechnology,2022,9:794714.
[39]ZHANG A, XU J J, XU X, et al. Genome-wide identification and characterization of the KCS gene family in sorghum (Sorghum bicolor (L.) Moench)[J]. PeerJ,2022,10:e14156.
相似文献/References:
[1]王杰利,陈盛,付正莉,等.营养分配调节对甘蓝型油菜种子大小的影响及其机制[J].江苏农业学报,2016,(04):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
WANG Jie-li,CHEN Sheng,FU Zheng-li,et al.Seed size of lateral branchesremoved Brassica napus and its cytological mechanism[J].,2016,(07):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
[2]何俊平,朱家成,王建平,等.甘蓝型油菜幼苗显微组织结构与抗寒性的关系[J].江苏农业学报,2017,(01):19.[doi:10.3969/j.issn.1000-4440.2017.01.004
]
HE Jun-ping,ZHU Jia-cheng,WANG Jian-ping,et al.The relationship between seedling microtructure and cold resistance of Brassica napus[J].,2017,(07):19.[doi:10.3969/j.issn.1000-4440.2017.01.004
]
[3]王健胜,侯桂玲,李少钦,等.甘蓝型油菜育种亲本产量及品质性状遗传效应分析[J].江苏农业学报,2015,(03):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
WANG Jian-sheng,HOU Gui-ling,LI Shao-qin,et al.Genetic effects of yield traits and quality traits for breeding parents of Brassica napus L.[J].,2015,(07):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
[4]陈盛,王宁宁,王玉康,等.一种快速高效筛选甘蓝型油菜转化植株的方法[J].江苏农业学报,2017,(05):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
CHEN Sheng,WANG Ning-ning,WANG Yu-kang,et al.A rapid and efficient approach to screening transformed plants of Brassica napus[J].,2017,(07):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
[5]高建芹,浦惠明,龙卫华,等.甘蓝型油菜籽粒产量和品质性状对氮肥用量的响应[J].江苏农业学报,2019,(03):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
GAO Jian-qin,PU Hui-ming,LONG Wei-hua,et al.Effects of nitrogen application rate on seed yield and its quality parameters of Brassica napus L.[J].,2019,(07):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
[6]熊丹,周霆,田方艳,等.甘蓝型油菜脂肪酸脱氢酶2兔源多克隆抗体的制备与应用[J].江苏农业学报,2020,(04):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
XIONG Dan,ZHOU Ting,TIAN Fang-yan,et al.Preparation and application of rabbit-derived polyclonal antibody against fatty acid desaturase 2 in Brassica napus[J].,2020,(07):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
[7]陈元军,马娟娟,史睿,等.整合关联分析和共表达网络分析挖掘甘蓝型油菜籽粒质量候选基因[J].江苏农业学报,2023,(04):913.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]
CHEN Yuan-jun,MA Juan-juan,SHI Rui,et al.Integrating genome-wide association study and weighted gene co-expression network analysis to explore candidate genes of seed weight in rapeseed (Brassica napus L.)[J].,2023,(07):913.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]