[1]万军斌,王旺田,孙万仓,等.甘蓝型油菜BnWSD家族基因鉴定及其在干旱胁迫下的表达特征[J].江苏农业学报,2024,(07):1170-1181.[doi:doi:10.3969/j.issn.1000-4440.2024.07.003]
 WAN Junbin,WANG Wangtian,SUN Wancang,et al.Identification of BnWSD family genes in Brassica napus L. and their expression characteristics under drought stress[J].,2024,(07):1170-1181.[doi:doi:10.3969/j.issn.1000-4440.2024.07.003]
点击复制

甘蓝型油菜BnWSD家族基因鉴定及其在干旱胁迫下的表达特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年07期
页码:
1170-1181
栏目:
遗传育种·生理生化
出版日期:
2024-07-30

文章信息/Info

Title:
Identification of BnWSD family genes in Brassica napus L. and their expression characteristics under drought stress
作者:
万军斌12王旺田12孙万仓12马骊12武军艳12刘丽君12蒲媛媛12张岩12李治忠12周蓉12
(1.甘肃农业大学生命科学技术学院/甘肃省干旱生境作物学重点实验室,甘肃兰州730070;2.甘肃省油菜工程技术研究中心,甘肃兰州730070)
Author(s):
WAN Junbin12WANG Wangtian12SUN Wancang12MA Li12WU Junyan12LIU Lijun12PU Yuanyuan12ZHANG Yan12LI Zhizhong12ZHOU Rong12
(1.College of Life Science and Technology of Gansu Agricultural University/Key Laboratory of Arid Habitat Crop Science of Gansu Province, Lanzhou 730070, China;2.Gansu Rape Engineering Technology Research Center, Lanzhou 730070, China)
关键词:
甘蓝型油菜WSD基因家族鉴定干旱胁迫
Keywords:
Brassica napusWSD gene familyidentificationdrought stress
分类号:
S634.301
DOI:
doi:10.3969/j.issn.1000-4440.2024.07.003
文献标志码:
A
摘要:
干旱胁迫能诱导作物蜡酯合成酶/二酰甘油酰基转移酶基因WSD(wax synthase/diacylglycerol acyltransferase)的表达。为明确甘蓝型油菜BnWSD家族基因的理化性质及其对干旱胁迫的响应特征,本研究基于甘蓝型油菜转录组数据库,利用生物信息学方法从甘蓝型油菜基因组中筛选BnWSD家族基因并对其结构、染色体定位、系统进化树及其编码蛋白质的理化性质、结构、保守基序、顺式作用元件等进行分析,并以陇油10号为试验材料,通过干旱胁迫处理明确BnWSD家族基因成员的表达特性。结果表明,甘蓝型油菜基因组中共鉴定到36个BnWSD家族基因,可分为3个亚家族,其编码蛋白质的氨基酸数量为105~538个,等电点为6.32~9.63;36个BnWSD家族基因共有8个保守基序,每个基因含有2~8个保守基序,motif 2是该家族共有的功能基序,在进化上较为保守;甘蓝型油菜BnWSD基因启动子区域存在11个与光响应、激素应答、干旱胁迫应答等相关的顺式作用元件。甘蓝型油菜不同器官中BnWSD基因的相对表达量存在差异,叶和茎中相对表达量较高,而根和花中的相对表达量较低或不表达。随着干旱程度加深,甘蓝型油菜叶片中BnWSD1-1、BnWSD2、BnWSD8、BnWSD9、BnWSD12、BnWSD18-1、BnWSD20-1、BnWSD24-1等基因的相对表达量呈增加趋势。综上,BnWSD基因与甘蓝型油菜抗旱性能密切相关,本研究结果为进一步解析甘蓝型油菜抗旱机制、明确BnWSD基因家族在表皮蜡质累积中的作用及甘蓝型油菜抗旱性品种选育提供了依据。
Abstract:
Drought stress can induce the expression of crop wax synthase/diacylglycerol acyltransferase (WSD) gene. In order to clarify the physical and chemical properties of BnWSD family genes in Brassica napus and their response characteristics to drought stress, this study used bioinformatics methods to screen BnWSD family genes from the B. napus genome and analyzed their structure, chromosome location, phylogenetic tree and the physical and chemical properties, structure, conserved motifs and cis-acting elements of their encoding proteins, based on the B. napus transcriptome database. The expression characteristics of BnWSD family genes were determined by drought stress treatment with Longyou 10 as the experimental material. The results showed that a total of 36 BnWSD family genes were identified in the genome of B.napus, of which could be divided into three subfamilies. The number of amino acids of encoded proteins of 36 BnWSD family genes ranged from 105 to 538, and the isoelectric point ranged from 6.32 to 9.63. There were eight conserved motifs in 36 BnWSD family genes, and each gene contained two to eight conserved motifs, and motif 2 was a common functional motif in the BnWSD family genes, which was relatively conserved in evolution. There were 11 cis-acting elements related to light response, hormone response and drought stress response in the promoter region of BnWSD gene in B. napus. The relative expression levels of BnWSD gene in different organs of B.napus were different. The relative expression levels in leaves and stems were relatively higher, while the relative expression levels in roots and flowers were relatively lower or not expressed. With the deepening of drought, the relative expression levels of BnWSD1-1, BnWSD2, BnWSD8, BnWSD9, BnWSD12, BnWSD18-1, BnWSD20-1 and BnWSD24-1 in leaves of B.napus showed an increasing trend. In summary, the BnWSD gene was closely related to the drought resistance of B.napus. The results of this study provide a basis for further analysis of the drought resistance mechanism of B.napus and clarifying the role of the BnWSD gene family in epidermal wax accumulation and the breeding of drought-resistant B.napus varieties.

参考文献/References:

[1]刘成,冯中朝,肖唐华,等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报,2019,41(4):485-489.
[2]YILDIZ M, AKALI N, TERZI H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid[J]. Journal of Plant Physiology,2015,179:90-99.
[3]李加纳,邱厥,唐章林,等. 甘蓝型油菜主要产量和品质性状的相关分析[J].中国油料,1990(1):11-16.
[4]ZHANG Y F, WU Y Q, CHEN S R, et al. Flavor of rapeseed oil:an overview of odorants, analytical techniques, and impact oftreatment[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3983-4018.
[5]熊秋芳,张效明,文静,等. 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良[J]. 中国粮油学报,2014,29(6):122-128.
[6]SAEID N, YOUSEF S, PARVIZ M. Effects of exogenous application of 24-epibrassinolide on photosynthesis parameters, grain yield, and protein of dragon’s head (Lallemantia iberica) under drought stress conditions[J]. Journal of Plant Growth Regulation,2023,42(7):4453-4465.
[7]王骏,蒋荣兵. 全球三大植物油期货市场国际关联性研究[J]. 南京农业大学学报(社会科学版),2008,8(3):30-37.
[8]JABBARI H, AKBARI G A, SIMA N A K K, et al. Relationships between seedling establishment and soil moisture content for winter and spring rapeseed genotypes[J]. Industrial Crops & Products,2013,49:177-187.
[9]BIJAY S, ANJU P, SAMIKSHYA A. The impact of climate change on insect pest biology and ecology:implications for pest management strategies, crop production, and food security[J]. Journal of Agriculture and Food Research,2023,14:10733-10750.
[10]SHANMUGAM G. 200 Years of fossil fuels and climate change (1900-2100)[J]. Journal of the Geological Society of India,2023,99(8):1043-1062.
[11]武军艳,方彦,刘翠平,等. 旱寒区冬油菜苗期抗寒性与抗旱性相关性分析[J]. 干旱地区农业研究,2014,32(2):142-146.
[12]KUNST L, SAMUELS L. Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology,2009,12(6):721-727.
[13]JETTER R, KUNST L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels[J]. The Plant Journal,2008,54(4):670-683.
[14]OHLROGGE J, BROWSE J. Lipid biosynthesis[J]. Plant Cell,1995,7(7):957-970.
[15]WETTSTEIN-KNOWLES P V. Biosynthesis of epicuticular lipids as analyzed with the aid of gene mutations in barley[M]. WINTERMANS J F G M, KUIPER P J C. Biochemistry and Metabolism of Plant Lipids. Amsterdam:Elsevier Biomedical Press,1982.
[16]KUNST L, SAMUELS A L. Biosynthesis and secretion of plant cuticular wax[J]. Progress in Lipid Research,2003,42(1):51-80.
[17]ZHENG H Q, ROWLAND O, KUNST L. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis[J]. The Plant Cell,2005,17(5):1467-1481.
[18]SAMUELS L, KUNST L, JETTER R. Sealing plant surfaces:cuticular wax formation by epidermal cells[J]. Annual Review of Plant Biology,2008,59(1):683-707.
[19]胡晓君,张正斌,刘文,等. 植物表皮蜡质及极长链脂肪酸类物质的研究进展[J]. 安徽农业科学,2013,41(12):5176-5185.
[20]MCNEVIN J P, WOODWARD W, HANNOUFA A, et al. Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana[J]. Genome,1993,36(3):610-618.
[21]HANNOUFA A, MCNEVIN J, LEMIEUX B. Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana[J]. Phytochemistry,1993,33(4):851-855.
[22]BERNARD A, JOUBS J M. Arabidopsis cuticular waxes: advances in synthesis, export and regulation[J]. Progress in Lipid Research,2013,52(1):110-129.
[23]BERNARD A, DOMERGUE F, PASCAL S, et al. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex[J]. Plant Cell,2012,24(7):3106-3118.
[24]LI F, WU X, LAM P, et al. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis[J]. Plant Physiology,2008,148(1):97-107.
[25]赵鸿,蔡迪花,王鹤龄,等. 干旱灾害对粮食安全的影响及其应对技术研究进展与展望[J]. 干旱气象,2023,41(2):187-206.
[26]李佳,刘涛,马菊莲,等. 烟草响应干旱胁迫与抗旱遗传育种研究进展[J]. 江苏农业科学,2023,51(8):34-43.
[27]吕婧妤,徐超,刘昱君,等. 基于模拟优化模型的干旱风沙草原区水-粮食-能源关系[J]. 排灌机械工程学报,2023,41(3):296-304.
[28]樊玉春,李玥,魏霖静,等. 三种胡麻生长模型对现蕾期和青果期干旱胁迫响应能力的比较[J]. 江苏农业学报,2023,39(2):423-433.
[29]徐存东,胡小萌,刘子金,等. 干旱区人工绿洲水土资源承载状态演变分析[J]. 排灌机械工程学报,2023,41(1):62-69.
[30]周旭旭,刘金洋,陈新,等. 绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J]. 江苏农业学报,2022,38(5):1179-1187.
[31]周苗,景秀,蔡嘉鑫,等. 灌浆前期高温干旱复合胁迫对优质食味粳稻产量与穗后物质生产特征的影响[J]. 南方农业学报,2022,53(12):3357-3368.
[32]MUN J H, KWON S J, YANG T J, et al. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication[J]. Genome Biology,2009,10(10):R111.
[33]XU Z, PU X, GAO R, et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants[J]. BMC Biology,2020,18(1):63-77.
[34]KING A, NAM J W, HAN J, et al. Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters[J]. Planta,2007,226(2):381-394.
[35]周彬. 苹果蜡酯合酶MdWSDs基因家族的鉴定及表达特性研究[D]. 杨凌:西北农林科技大学,2018.
[36]TOMIYAMA T, KURIHARA K, OGAWA T, et al. Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis[J]. Scientific Reports,2017,7:13504.
[37]KALSCHEUER R, STEINBCHEL A. A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1[J]. Journal of Biological Chemistry,2003,278(10):8075-8082.
[38]MA H Y, ZHENG J, LI Y H, et al. A novel bifunctional wax ester synthase involved in early triacylglycerol accumulation in unicellular green microalga Haematococcus pluvialis under high light stress[J]. Frontiers in Bioengineering and Biotechnology,2022,9:794714.
[39]ZHANG A, XU J J, XU X, et al. Genome-wide identification and characterization of the KCS gene family in sorghum (Sorghum bicolor (L.) Moench)[J]. PeerJ,2022,10:e14156.

相似文献/References:

[1]王杰利,陈盛,付正莉,等.营养分配调节对甘蓝型油菜种子大小的影响及其机制[J].江苏农业学报,2016,(04):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
 WANG Jie-li,CHEN Sheng,FU Zheng-li,et al.Seed size of lateral branchesremoved Brassica napus and its cytological mechanism[J].,2016,(07):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
[2]何俊平,朱家成,王建平,等.甘蓝型油菜幼苗显微组织结构与抗寒性的关系[J].江苏农业学报,2017,(01):19.[doi:10.3969/j.issn.1000-4440.2017.01.004 ]
 HE Jun-ping,ZHU Jia-cheng,WANG Jian-ping,et al.The relationship between seedling microtructure and cold resistance of Brassica napus[J].,2017,(07):19.[doi:10.3969/j.issn.1000-4440.2017.01.004 ]
[3]王健胜,侯桂玲,李少钦,等.甘蓝型油菜育种亲本产量及品质性状遗传效应分析[J].江苏农业学报,2015,(03):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
 WANG Jian-sheng,HOU Gui-ling,LI Shao-qin,et al.Genetic effects of yield traits and quality traits for breeding parents of Brassica napus L.[J].,2015,(07):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
[4]陈盛,王宁宁,王玉康,等.一种快速高效筛选甘蓝型油菜转化植株的方法[J].江苏农业学报,2017,(05):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
 CHEN Sheng,WANG Ning-ning,WANG Yu-kang,et al.A rapid and efficient approach to screening transformed plants of Brassica napus[J].,2017,(07):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
[5]高建芹,浦惠明,龙卫华,等.甘蓝型油菜籽粒产量和品质性状对氮肥用量的响应[J].江苏农业学报,2019,(03):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
 GAO Jian-qin,PU Hui-ming,LONG Wei-hua,et al.Effects of nitrogen application rate on seed yield and its quality parameters of Brassica napus L.[J].,2019,(07):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
[6]熊丹,周霆,田方艳,等.甘蓝型油菜脂肪酸脱氢酶2兔源多克隆抗体的制备与应用[J].江苏农业学报,2020,(04):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
 XIONG Dan,ZHOU Ting,TIAN Fang-yan,et al.Preparation and application of rabbit-derived polyclonal antibody against fatty acid desaturase 2 in Brassica napus[J].,2020,(07):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
[7]陈元军,马娟娟,史睿,等.整合关联分析和共表达网络分析挖掘甘蓝型油菜籽粒质量候选基因[J].江苏农业学报,2023,(04):913.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]
 CHEN Yuan-jun,MA Juan-juan,SHI Rui,et al.Integrating genome-wide association study and weighted gene co-expression network analysis to explore candidate genes of seed weight in rapeseed (Brassica napus L.)[J].,2023,(07):913.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]

备注/Memo

备注/Memo:
收稿日期:2023-07-31基金项目:甘肃省教育厅高等学校创新基金项目(2022A-054);甘肃省科技重大专项(22ZD6NA009);2023年甘肃省级现代寒旱农业科技支撑项目(KJZC-2023-12);国家油菜产业技术体系项目(CARS-12)作者简介:万军斌(1997-),男,甘肃平凉人,硕士研究生,主要从事油菜抗旱生理的研究。(E-mail)2107106686@qq.com通讯作者:王旺田,(E-mail)wtwang@gsau.edu.cn;孙万仓,(E-mail)18293121851@163.com
更新日期/Last Update: 2024-09-14