[1]董成,冯发运,马丽雅,等.生物炭固定化菌剂对毒死蜱污染土壤的修复及小白菜品质的改善[J].江苏农业学报,2024,(05):846-854.[doi:doi:10.3969/j.issn.1000-4440.2024.05.009]
 DONG Cheng,FENG Fayun,MA Liya,et al.Remediation of chlorpyrifos contaminated soil by biochar immobilized bacteria and improvement of Chinese cabbage quality[J].,2024,(05):846-854.[doi:doi:10.3969/j.issn.1000-4440.2024.05.009]
点击复制

生物炭固定化菌剂对毒死蜱污染土壤的修复及小白菜品质的改善()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
846-854
栏目:
耕作栽培·资源环境
出版日期:
2024-05-30

文章信息/Info

Title:
Remediation of chlorpyrifos contaminated soil by biochar immobilized bacteria and improvement of Chinese cabbage quality
作者:
董成12冯发运2马丽雅2生弘杰2余向阳2陈静1葛静12
(1.江苏海洋大学海洋食品与生物工程学院,江苏连云港222005;2.江苏省农业科学院农产品质量安全与营养研究所,江苏南京210014)
Author(s):
DONG Cheng12FENG Fayun2MA Liya2SHENG Hongjie2YU Xiangyang2CHEN Jing1GE Jing12
(1.School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, China;2.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
毒死蜱鞘氨醇单胞菌生物炭生物修复小白菜
Keywords:
chlorpyrifosSphingomonas spbiocharbioremediationChinese cabbage
分类号:
S634.304;S181
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.009
摘要:
生物炭可以吸附土壤中有机污染物,降低污染物对植物的毒害,但是被吸附的污染物存在二次释放的风险,影响生物炭的修复性能。本研究采用生物炭对实验室前期筛选的3株具有降解毒死蜱功能的内生菌进行固定,对生物炭固定化菌剂制备条件进行优化,利用盆栽试验对生物炭固定化菌剂降解毒死蜱性能进行了验证。结果表明,生物炭固定化HJY菌对毒死蜱降解效果最优,在生物炭粒径为60目、固定化温度30 ℃、固定化时间为1 d时制备的生物炭固定化菌剂施入土壤中15 d对毒死蜱的降解率可高达92.40%。施入土壤35 d,在2 mg/kg毒死蜱污染土中相较于生物炭,生物炭固定化菌剂处理小白菜和土壤毒死蜱含量分别降低了81.8%和77.4%,在20 mg/kg毒死蜱污染土中小白菜和土壤毒死蜱含量降低了79.4%和50.3%;小白菜生物量,叶绿素、可溶性蛋白、可溶性糖含量,过氧化物酶(POD)和超氧化物歧化酶(SOD)活性显著增加。小白菜中毒死蜱含量与土壤中毒死蜱含量呈显著正相关关系,小白菜品质与其毒死蜱含量呈显著负相关关系。表明与生物炭相比,生物炭固定化菌剂显著提升了对毒死蜱污染土壤的修复性能,并改善了小白菜的品质。
Abstract:
Biochar can adsorb organic pollutants in the soil and reduce the phytotoxicity of pollutants, but the adsorbed pollutants have the risk of secondary release, which affects the remediation performance of biochar. In this study, biochar was used to immobilize three endophytes with chlorpyrifos degradation function selected in the early laboratory stage. The preparation conditions of biochar immobilized bacteria were optimized, and the degradation performance of chlorpyrifos by biochar immobilized bacteria was verified by pot experiment. The results showed that HJY had the best degradation effect on chlorpyrifos. The biochar immobilized microbial agent was prepared under the conditions of biochar particle size of 60 mesh, immobilization temperature of 30 ℃ and immobilization time of 1 d. The degradation rate of chlorpyrifos was 92.40% when the prepared biochar immobilized microbial agent was applied to the soil for 15 days. After 35 days of application to the soil, in the 2 mg/kg chlorpyrifos contaminated soil, compared with biochar treatment, the content of chlorpyrifos in Chinese cabbage and soil in the biochar immobilized microbial agent treatment decreased by 81.8% and 77.4%, respectively. In 20 mg/kg chlorpyrifos contaminated soil, the content of chlorpyrifos in Chinese cabbage and soil decreased by 79.4% and 50.3%, respectively. The biomass, chlorophyll content, soluble protein content, soluble sugar content, peroxidase (POD) activity and superoxide dismutase (SOD) activity of Chinese cabbage increased significantly. There was a significant positive correlation between the content of chlorpyrifos in Chinese cabbage and the content of chlorpyrifos in soil, and there was a significant negative correlation between the quality of Chinese cabbage and the content of chlorpyrifos. Compared with biochar, biochar-immobilized microbial agent significantly improved the remediation performance of chlorpyrifos-contaminated soil and improved the quality of Chinese cabbage.

参考文献/References:

[1]杨益军. 2018年中国(全球)毒死蜱市场现状及预测[J]. 农药科学与管理,2019,40(1):18-24.
[2]LIU C, WEN S, LI S, et al. Enhanced remediation of chlorpyrifos-contaminated soil by immobilized strain Bacillus H27[J]. Journal of Environmental Sciences,2024,144:172-184.
[3]DUTTA M, SARDAR D, PAL R, et al. Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil[J]. Environ Monit Assess,2010,160(1/2/3/4):385-391.
[4]王川,周巧红,吴振斌. 有机磷农药毒死蜱研究进展[J]. 环境科学与技术,2011,34(7):123-127.
[5]LI R, HE L, WEI W, et al. Chlorpyrifos residue levels on field crops (rice, maize and soybean) in China and their dietary risks to consumers[J]. Food Control,2015,51:212-217.
[6]LIU B, MCCONNELL L L, TORRENTS A. Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay[J]. Chemosphere,2001,44(6):1315-1323.
[7]王俊,胡进锋,陈峰,等. 福州菜地土壤中有机磷农药残留特征及风险评价[J]. 农业环境科学学报,2014,33(5):951-957.
[8]NGAN C K, CHEAH U B, ABDULLAH W Y W, et al. Fate of chlorothalonil, chlorpyrifos and profenofos in a vegetable farm in cameron Highlands, Malaysia[J]. Water,Air, & Soil Pollution:Focus,2005,5(1):125-136.
[9]MAYA K, SINGH R S, UPADHYAY S N, et al. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP[J]. Process Biochemistry,2011,46(11):2130-2136.
[10]MIE A, RUDN C, GRANDJEAN P. Safety of safety evaluation of pesticides:developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl[J]. Environmental Health,2018,17(1):77.
[11]AKBAR S, SULTAN S. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement[J]. Brazilian Journal of Microbiology,2016,47(3):563-570.
[12]MASUD M A A, SHIN W S, SARKER A, et al. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions[J]. Science of the Total Environment,2023,904:166813.
[13]KIM H, KIM K, KIM H, et al. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil[J]. Environmental Earth Sciences,2015,74(2):1249-1259.
[14]RAJAPAKSHA A, VITHANAGE M, ZHANG M, et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars[J]. Bioresource Technology,2014,166:303-308.
[15]YAO B, LUO Z, YANG J, et al. FeIIFeIII layered double hydroxide modified carbon felt cathode for removal of ciprofloxacin in electro-Fenton process[J]. Environmental Research,2021,197:111144.
[16]LIU J, DING Y, MA L, et al. Combination of biochar and immobilized bacteria in cypermethrin-contaminated soil remediation[J]. International Biodeterioration & Biodegradation,2017,120:15-20.
[17]QI X, GOU J, CHEN X, et al. Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil[J]. Journal of Hazardous Materials,2021,401:123823.
[18]冯发运. 具有毒死蜱降解特性的植物内生菌的分离筛选[D]. 杭州:浙江农林大学,2015.
[19]FENG F, CHEN X, WANG Q, et al. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables[J]. Journal of Environmental Management,2020,253:109636.
[20]PIETIKINEN J, KIIKKIL O, FRUTZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. OIKOS,2000,89(2):231-242.
[21]HERMANSSON M. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B: Biointerfaces,1999,14(1/2/3/4):105-119.
[22]YU Y, GUO H, ZHONG Z, et al. Enhanced removal of tetrabromobisphenol A by Burkholderia cepacian Y17 immobilized on biochar[J]. Ecotoxicology and Environmental Safety,2023,249:114450.
[23]XIONG B, ZHANG Y, HOU Y, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar[J]. Chemosphere,2017,182:316-324.
[24]ZHANG W, SHEN J, ZHANG H, et al. Efficient nitrate removal by Pseudomonas mendocina GL6 immobilized on biochar[J]. Bioresource Technology, Part A,2021,320:124324.
[25]SINGH M, RANO S, ROY S, et al. Characterization of organophosphate pesticide sorption of potato peel biochar as low cost adsorbent for chlorpyrifos removal[J]. Chemosphere,2022,297:134112.
[26]WU C, ZHI D, YAO B, et al. Immobilization of microbes on biochar for water and soil remediation:a review[J]. Environmental Research, Part B,2022,212:113226.
[27]SUN T, MIAO J, SALEEM M, et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning[J]. Journal of Hazardous Materials,2020,398:122941.
[28]BAKSHI P, SHARMA P, CHOUHAN R, et al. Interactive effect of 24-epibrassinolide and plant growth promoting rhizobacteria inoculation restores photosynthetic attributes in Brassica juncea L. under chlorpyrifos toxicity[J]. Environmental Pollution,2023,320:120760.
[29]WANG L, QIN Z, LI X, et al. Persistence behavior of chlorpyrifos and biological toxicity mechanism to cucumbers under greenhouse conditions[J]. Ecotoxicology and Environmental Safety,2022,242:113894.
[30]PATEL A K, SINGHAN R R, PAL A, et al. Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases[J]. Science of the Total Environment,2022,817:153054.
[31]WANG L, CHEN H, WU J, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil[J]. Journal of Hazardous Materials,2021,414:125494.
[32]AZEEM M, HASSAN T, TAHIR M I, et al. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity[J]. Applied Soil Ecology,2021,157:103732.
[33]石阳阳. 生物炭与Cd耐受菌复配对Cd污染土壤修复及小白菜安全生产的影响[D]. 雅安:四川农业大学,2022.
[34]HERBINGER K, TAUSZ M, WONISCH A, et al. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars[J]. Plant Physiology and Biochemistry,2002,40(6/7/8):691-696.
[35]CANNATA M, CARVALHO R, BERTOLI A, et al. Effects of cadmium and lead on plant growth and content of heavy metals in arugula cultivated in nutritive solution[J]. Communications in Soil Science and Plant Analysis,2013,44(5):952-961.
[36]吴海霞,孙萍,卢爽,等. 浒苔生物炭促进土壤Pb固定并缓解植物Pb毒性[J]. 中国环境科学,2020,40(8):3530-3538.

相似文献/References:

[1]贺江,龙海波.分散液相微萃取-高效液相色谱法测定水体中毒死蜱残留[J].江苏农业学报,2015,(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2015.05.037]
 HE Jiang,LONG Hai-bo.A dispersive liquid-liquid microextraction-HPLC method for determination of chlorpyrifos in water[J].,2015,(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2015.05.037]
[2]徐鹿,罗光华,金瑜剑,等.转录组测序分析毒死蜱与醚菊酯混配对二化螟毒杀的增效机制[J].江苏农业学报,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
 XU Lu,LUO Guang-hua,JIN Yu-jian,et al.Study on the synergistic mechanism of chlorpyrifos and ethofenprox mixture in poisoning Chilo suppressalis based on transcriptome sequencing[J].,2021,(05):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]

备注/Memo

备注/Memo:
收稿日期:2023-10-16基金项目:江苏省农业科技自主创新基金项目[CX(22)2036]作者简介:董成(1997-),男,江苏徐州人,硕士研究生,主要从事农产品产地污染修复研究。(E-mail)15262031644@163.com通讯作者:陈静,(E-mail)1995000023@jou.edu.cn;葛静,(E-mail)cherrygejing@126.com
更新日期/Last Update: 2024-07-13