参考文献/References:
[1]杨益军. 2018年中国(全球)毒死蜱市场现状及预测[J]. 农药科学与管理,2019,40(1):18-24.
[2]LIU C, WEN S, LI S, et al. Enhanced remediation of chlorpyrifos-contaminated soil by immobilized strain Bacillus H27[J]. Journal of Environmental Sciences,2024,144:172-184.
[3]DUTTA M, SARDAR D, PAL R, et al. Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil[J]. Environ Monit Assess,2010,160(1/2/3/4):385-391.
[4]王川,周巧红,吴振斌. 有机磷农药毒死蜱研究进展[J]. 环境科学与技术,2011,34(7):123-127.
[5]LI R, HE L, WEI W, et al. Chlorpyrifos residue levels on field crops (rice, maize and soybean) in China and their dietary risks to consumers[J]. Food Control,2015,51:212-217.
[6]LIU B, MCCONNELL L L, TORRENTS A. Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay[J]. Chemosphere,2001,44(6):1315-1323.
[7]王俊,胡进锋,陈峰,等. 福州菜地土壤中有机磷农药残留特征及风险评价[J]. 农业环境科学学报,2014,33(5):951-957.
[8]NGAN C K, CHEAH U B, ABDULLAH W Y W, et al. Fate of chlorothalonil, chlorpyrifos and profenofos in a vegetable farm in cameron Highlands, Malaysia[J]. Water,Air, & Soil Pollution:Focus,2005,5(1):125-136.
[9]MAYA K, SINGH R S, UPADHYAY S N, et al. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP[J]. Process Biochemistry,2011,46(11):2130-2136.
[10]MIE A, RUDN C, GRANDJEAN P. Safety of safety evaluation of pesticides:developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl[J]. Environmental Health,2018,17(1):77.
[11]AKBAR S, SULTAN S. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement[J]. Brazilian Journal of Microbiology,2016,47(3):563-570.
[12]MASUD M A A, SHIN W S, SARKER A, et al. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions[J]. Science of the Total Environment,2023,904:166813.
[13]KIM H, KIM K, KIM H, et al. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil[J]. Environmental Earth Sciences,2015,74(2):1249-1259.
[14]RAJAPAKSHA A, VITHANAGE M, ZHANG M, et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars[J]. Bioresource Technology,2014,166:303-308.
[15]YAO B, LUO Z, YANG J, et al. FeIIFeIII layered double hydroxide modified carbon felt cathode for removal of ciprofloxacin in electro-Fenton process[J]. Environmental Research,2021,197:111144.
[16]LIU J, DING Y, MA L, et al. Combination of biochar and immobilized bacteria in cypermethrin-contaminated soil remediation[J]. International Biodeterioration & Biodegradation,2017,120:15-20.
[17]QI X, GOU J, CHEN X, et al. Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil[J]. Journal of Hazardous Materials,2021,401:123823.
[18]冯发运. 具有毒死蜱降解特性的植物内生菌的分离筛选[D]. 杭州:浙江农林大学,2015.
[19]FENG F, CHEN X, WANG Q, et al. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables[J]. Journal of Environmental Management,2020,253:109636.
[20]PIETIKINEN J, KIIKKIL O, FRUTZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. OIKOS,2000,89(2):231-242.
[21]HERMANSSON M. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B: Biointerfaces,1999,14(1/2/3/4):105-119.
[22]YU Y, GUO H, ZHONG Z, et al. Enhanced removal of tetrabromobisphenol A by Burkholderia cepacian Y17 immobilized on biochar[J]. Ecotoxicology and Environmental Safety,2023,249:114450.
[23]XIONG B, ZHANG Y, HOU Y, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar[J]. Chemosphere,2017,182:316-324.
[24]ZHANG W, SHEN J, ZHANG H, et al. Efficient nitrate removal by Pseudomonas mendocina GL6 immobilized on biochar[J]. Bioresource Technology, Part A,2021,320:124324.
[25]SINGH M, RANO S, ROY S, et al. Characterization of organophosphate pesticide sorption of potato peel biochar as low cost adsorbent for chlorpyrifos removal[J]. Chemosphere,2022,297:134112.
[26]WU C, ZHI D, YAO B, et al. Immobilization of microbes on biochar for water and soil remediation:a review[J]. Environmental Research, Part B,2022,212:113226.
[27]SUN T, MIAO J, SALEEM M, et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning[J]. Journal of Hazardous Materials,2020,398:122941.
[28]BAKSHI P, SHARMA P, CHOUHAN R, et al. Interactive effect of 24-epibrassinolide and plant growth promoting rhizobacteria inoculation restores photosynthetic attributes in Brassica juncea L. under chlorpyrifos toxicity[J]. Environmental Pollution,2023,320:120760.
[29]WANG L, QIN Z, LI X, et al. Persistence behavior of chlorpyrifos and biological toxicity mechanism to cucumbers under greenhouse conditions[J]. Ecotoxicology and Environmental Safety,2022,242:113894.
[30]PATEL A K, SINGHAN R R, PAL A, et al. Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases[J]. Science of the Total Environment,2022,817:153054.
[31]WANG L, CHEN H, WU J, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil[J]. Journal of Hazardous Materials,2021,414:125494.
[32]AZEEM M, HASSAN T, TAHIR M I, et al. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity[J]. Applied Soil Ecology,2021,157:103732.
[33]石阳阳. 生物炭与Cd耐受菌复配对Cd污染土壤修复及小白菜安全生产的影响[D]. 雅安:四川农业大学,2022.
[34]HERBINGER K, TAUSZ M, WONISCH A, et al. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars[J]. Plant Physiology and Biochemistry,2002,40(6/7/8):691-696.
[35]CANNATA M, CARVALHO R, BERTOLI A, et al. Effects of cadmium and lead on plant growth and content of heavy metals in arugula cultivated in nutritive solution[J]. Communications in Soil Science and Plant Analysis,2013,44(5):952-961.
[36]吴海霞,孙萍,卢爽,等. 浒苔生物炭促进土壤Pb固定并缓解植物Pb毒性[J]. 中国环境科学,2020,40(8):3530-3538.