[1]赵政,王呈玉,米洋辰,等.秸秆还田方式对土壤水分影响的机制[J].江苏农业学报,2024,(05):835-845.[doi:doi:10.3969/j.issn.1000-4440.2024.05.008]
 ZHAO Zheng,WANG Chengyu,MI Yangchen,et al.Mechanism of the effect of straw returning on soil moisture[J].,2024,(05):835-845.[doi:doi:10.3969/j.issn.1000-4440.2024.05.008]
点击复制

秸秆还田方式对土壤水分影响的机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
835-845
栏目:
耕作栽培·资源环境
出版日期:
2024-05-30

文章信息/Info

Title:
Mechanism of the effect of straw returning on soil moisture
作者:
赵政1王呈玉1米洋辰1韩华1冯秋苹1高云航2刘淑霞1
(1.吉林农业大学资源与环境学院/吉林省商品粮基地土壤资源可持续利用重点实验室,吉林长春130118;2.吉林农业大学动物科技学院,吉林长春130118)
Author(s):
ZHAO Zheng1WANG Chengyu1MI Yangchen1HAN Hua1FENG Qiuping1GAO Yunhang2LIU Shuxia1
(1.College of Resources and Environment of Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources of Commodity Grain Base of Jilin Province, Changchun 130118, China;2.College of Animal Science and Technology of Jilin Agricultural University, Changchun 130118, China)
关键词:
秸秆还田土壤水分机理相关性分析
Keywords:
straw returningsoil moisturemechanismcorrelation analysis
分类号:
S141.4
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.008
摘要:
为了探究不同秸秆还田方式对土壤水分的影响, 并揭示秸秆还田方式对土壤水分的影响机理, 本研究设置对照(CK)与6种处理[秸秆翻埋还田(SB)、秸秆轮耕还田(SRT)、秸秆碎混还田(SC)、秸秆覆盖还田(SM)、秸秆留高茬还田(SHS)、秸秆条带还田(SS)], 开展室内室外分析和定位试验, 测定土壤水分指标并进行相关性分析。结果表明, 秸秆还田可以提高土壤的蓄水和供水能力, 具体表现为土壤的含水量、饱和持水量、最大分子含水量、比水容量的提高, 与对照相比SB处理效果最好;秸秆还田可以增强土壤中水分的运动能力, 提高土壤中可被植物利用的水分含量, 具体表现为土壤田间最小持水量、毛管持水量、自由水含量、有效水含量的提高;秸秆还田可以提高土壤有机质含量, 降低容重, 提高黏粒含量, 增大土壤总孔隙占比、大孔隙占比、中孔隙占比, 提高土壤水分的有效性, 与对照相比SB处理效果最好;土壤有机质含量、土壤黏粒含量、土壤总孔隙占比、大孔隙占比、中孔隙占比、土壤团聚体平均重量直径(MWD)、几何平均直径(GMD)与土壤饱和持水量、田间最小持水量、萎蔫系数、水力传导度呈显著或极显著正相关;土壤团聚体破坏率(PAD)、不稳定团粒指数(ELT)与土壤饱和持水量、自由水含量、萎蔫系数、最大分子含水量呈显著或极显著负相关。结合秸秆还田对土壤水分特性的影响和相关性分析结果, 可以得出秸秆还田对土壤水分影响的作用机制:秸秆在土壤中被分解后, 土壤有机质含量增高, 容重降低, 大大增加了土壤颗粒的比表面积, 土壤中黏粒含量增多, 总孔隙、大孔隙、中孔隙的占比提高, 土壤结构得到了优化, 综合提高了土壤的蓄水和供水能力, 促进了土壤对水分的吸收和利用。综合来看, 秸秆翻埋还田方式适合中国东北地区, 本研究结果为农民选择合适的秸秆还田方式提供了科学指导。
Abstract:
To investigate the effects of different straw returning methods on soil moisture and to reveal the mechanism of the effects of straw returning methods on soil moisture, control (CK) and six treatments were set up in this study. The six treatments were straw burying and returning (SB), straw rotational tillage and returning (SRT), straw chopping and mixing and returning (SC), straw mulching and returning (SM), straw returning and leaving high stubble (SHS) and straw strip returning (SS), respectively. Indoor and outdoor analyses and location experiments were performed to measure the soil moisture indices and to analyze the correlation between the two methods. The results showed that straw returning could improve the water storage and supply capacity of the soil, which was specifically manifested as the increase of soil water content, saturated water holding capacity, maximum molecular water content, specific water capacity value, and the SB treatment showed the best effect compared with the control. Besides, straw returning could enhance the movement ability of the water in the soil and increase the content of water in the soil that could be utilized by plants, which was specifically manifested as the increase of the minimum water holding capacity of the field soil, capillary water content, free water content and effective water content. Furthermore, straw returning could increase soil organic matter content, reduce the volumetric weight, increase the content of clay particles, improve the proportions of total soil pores, large soil pores and medium soil pores and could improve the effectiveness of soil water, and the SB treatment showed the best effect compared with the control. Soil organic matter content, soil clay particles content and the proportions of total soil pores, large soil pores and medium soil pores, mean weight diameter (MWD) of soil aggregates, geometric mean diameter (GMD) of soil aggregates showed significantly or highly significantly positive correlation with soil saturated water-holding capacity, field minimum water-holding capacity, coefficient of wilting, and hydraulic conductivity. Percentage of aggregate disruption (PAD) and unstable aggregate index (ELT) showed significantly or highly significantly negative correlation with soil saturated water holding capacity, free water content, wilting coefficient, and maximum molecular water content. Combined with the results such as the influence of straw returning on soil moisture characteristics and correlation analysis, the mechanism of the effect of straw returning on soil moisture can be concluded as follows: after the straws were decomposed in the soils, the soil organic matter content increased, the volumetric weight decreased, the specific surface area of soil particles increased greatly, the content of clay particles in the soil increased, the percentages of total soil pores, large soil pores and medium soil pores increased, the soil structure was optimized, the soil’s abilities of storing water and supplying water were comprehensively improved, and the soil’s abilities of water absorption and utilization were strengthened. In conclusion, the method of straw burying is suitable for lands in Northeast China, and the results in this study can provide scientific guidance for farmers to choose appropriate method of straw returning.

参考文献/References:

[1]丁凯鑫,王立春,田国奎,等. 马铃薯生长及生理特性对水分胁迫的响应研究[EB/OL].(2022-03-16)
[2023-03-08]. http://kns.cnki.net/kcms/detail/11.1808.S.20230209.1527.012.html.
[2]甘磊,郑思文,黄太庆,等. 桂林喀斯特地区干湿循环过程中土壤水含量的空间变异[J]. 南方农业学报,2017,48(9):1587-1593.
[3]GAO F F, ZHANG Y, HE Y, et al. Risk assessment of drought in the yangtze river delta based on natural disaster risk theory[J]. Discrete Dynamics in Nature and Society,2017,2017(2):1-7.
[4]李臻,季民,李云岭,等. 山东省干旱灾害风险评估与区划研究[J]. 人民长江,2023,54(1):80-87.
[5]杨俊彦,陈印军,王琦琪. 东北三省区耕地资源与粮食生产潜力分析[J]. 土壤通报,2017,48(5):1055-1060.
[6]吴金华,盛芝露,杜加强,等. 1956-2017年东北地区气温和降水的时空变化特征[J]. 水土保持研究,2021,28(3):340-347.
[7]王晓丹. 标准化植被干旱指数在东北地区的构建与应用[D]. 兰州:西北师范大学,2021.
[8]陈盛,黄达,张力,等. 秸秆还田对土壤理化性质及水肥状况影响的研究进展[J]. 灌溉排水学报,2022,41(6):1-11.
[9]AN J P, LI C F, QI H, et al. Effects of straw strip returning on spring maize yield, soil moisture, nitro-gen contents and root distribution in Northeast China[J]. Acta Agronomica Sinica,2018,44(5):774.
[10]李玉梅,王根林,孟祥海,等. 不同耕作方式对土壤水分和养分变化的影响[J]. 东北农业大学学报,2019,49(9):54-60.
[11]LIN W, LIU W Z, XUE Q W. Spring maize yield,soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau[J]. Scientific Reports,2017,15(7):38995.
[12]鲁如坤. 土壤农业化学分析方法[M]. 1版.北京:中国农业科技出版社,2000.
[13]ALLAIRELEUNG S E, GUPTA S C, MONCRIEF J F. Water and solute movement in soil as influenced by macropore characteristics: 1. Macropore continuity[J]. Journal of Contaminant Hydrology,2000,41(3/4):303-315.
[14]陈学文,张晓平,梁爱珍,等. 耕作方式对黑土耕层孔隙分布和水分特征的影响[J]. 干旱区资源与环境,2012,26(6):114-120.
[15]TABOADA M A, MICUCCI F G, COSENTINO D J, et al. Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina[J]. Soil and Tillage Research,1998,49(1):57-63.
[16]SCHJONNING P, RASMUSSEN K J. Soil strength and soil pore characteristics for direct drilled and ploughed soils[J]. Soil and Tillage Research,2000,57(1/2):69-82.
[17]HILL R L, HORTON R, CRUSE R M. Tillage effects on soil water retention and pore size distribution of two Mollisols1[J]. Soil Science Society of America Journal,1985,49(5):1264-1270.
[18]郑纪勇,邵明安,张兴昌. 黄土区坡面表层土壤容重和饱和导水率空间变异特征[J]. 水土保持学报,2004,2004(3):53-56.
[19]MOUAZEN A M, RAMON H. Development of on-line measurement system of bulk density based on on-line measured draught,depth and soil moisture content[J]. Soil and Tillage Research,2006,86(2):218-229.
[20]HOLLIS J M, LILLY A, HIGGINS A, et al. Predicting the water retention characteristics of UK mineral soils[J]. European Journal of Soil Science,2015(1):239-252.
[21]KAY B D, VANDENBYGAART A J. Conservation tillage and depth stratification of porosity and soil organic matter[J]. Soil and Tillage Research,2002,66(2):107-118.
[22]陈志雄,汪仁真. 中国几种土壤的持水性质[J]. 土壤学报,1979,16(3):277-281.
[23]邹 诚,徐福利,月亚丹. 黄土高原丘陵沟壑区不同土地利用模式对士壤机械组成和速效养分影响分析[J]. 中国农学通报,2008,24(12):424-427.
[24]RABOT E, WIESMEIER M, SCHLUTER S, et al. Soil structure as an indicator of soil functions: a review[J]. Geoderma,2018,3028(314):122-137.
[25]蔡位子,刘怡颖,江俊,等. 土壤孔隙结构检测技术研究现状与展望[J]. 沈阳农业大学学报,2023,54(5):627-640.
[26]李文凤,范如芹,张晓平,等. 短期免耕对黑土孔隙度的影响[J]. 农业系统科学与综合研究,2011,26(4):458-462.
[27]郑子成,李廷轩,张锡洲,等. 不同土地利用方式下土壤团聚体的组成及稳定性研究[J]. 水士保持学报,2009,23(5):228-231.
[28]王润泽,谌芸,李铁,等. 紫色土区植物篱篱前淤积带土壤团聚体稳定性特征研究[J]. 水土保持学报,2018,32(2):210-216.
[29]李波,陈天助,姚名泽,等. 东北半湿润地区深埋秸秆周围土壤水分的动态变化[J]. 灌溉排水学报,2016,35(9):51-55.
[30]王婧,张莉,逄焕成,等. 秸秆颗粒化还田加速腐解速率提高培肥效果[J]. 农业工程学报,2017,33(6):177-183.
[31]伍玉鹏,彭其安, MUHAMMAD S,等. 秸秆还田对土壤微生物影响的研究进展[J]. 中国农学通报,2014,30(29):175-183.
[32]张宏媛,逄焕成,卢闯,等. CT扫描分析秸秆隔层孔隙特征及其对土壤水入渗的影响[J]. 农业工程学报,2019,35(6):114-122.
[33]LI R F, RUAN X H, BAI Y, et al. Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin,China[J]. Science of the Total Environment,2017,2017(592):78-75.
[34]YIN H J, ZHAO W Q, LI T, et al. Balancing straw returning and chemical fertilizers in China: role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews,2018,81(2):2695-2702.
[35]FENG X M, HAO Y B, LATIFMANESH H, et al. Effects of subsoiling tillage on soil properties, maize root distribution, and grain yield on mollisols of Northeastern China[J]. Agronomy Journal,2018,110(4):1607-1615.
[36]丁瑞霞,王维钰,张青. 两种轮作模式下秸秆还田对土壤呼吸及其温度敏感性的影响[J]. 中国生态农业学报,2017,25(8):1106-1118.
[37]张文可,苏思慧,隋鹏祥,等. 秸秆还田模式对东北春玉米根系分布和水分利用效率的影响[J]. 生态学杂志,2018,37(8):2300-2308.
[38]LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.
[39]王珍,冯浩,吴淑芳. 秸秆不同还田方式对土壤低吸力段持水能力及蒸发特性的影响[J]. 土壤学报,2011,48(3):533-539.
[40]万松华,胡厚军,邓桂芹. 浅析土壤有机质含量与土壤物理性能参数的相关性[J]. 农业与技术,2013,33(8):8.
[41]王东升,王君. 低分子量有机酸作用下土壤矿物钾释放机制[J]. 辽宁工程技术大学学报(自然科学版),2009,28(增刊2):259-261.
[42]张燕,李亮生,陈帅伟,等. 小麦秸秆及其生物炭对植烟土壤养分、酶活性及细菌群落结构的影响[J]. 江苏农业科学,2023,51(7):213-220.
[43]刘丽华,李杨,秦猛,等. 膨化秸秆还田对寒地水稻养分积累、转运、分配及产量的影响[J]. 南方农业学报,2023,54(2):497-505.
[44]胡中泽,衣政伟,杨大柳,等. 氮肥减施与花生秸秆还田对麦田土壤氨挥发、氮肥利用率及产量的影响[J]. 江苏农业学报,2022,38(6):1492-1499.
[45]李国齐,吴汉. 免耕与秸秆还田对直播稻产量及水分利用的影响[J]. 排灌机械工程学报,2022,40(9):945-951.
[46]陶玥玥,周新伟,金梅娟,等. 湿润稻作体系中还田小麦秸秆分解及土壤活性碳变化特征[J]. 江苏农业学报,2022,38(1):94-101.
[47]张婷,张一新,向洪勇. 秸秆还田培肥土壤的效应及机制研究进展[J]. 江苏农业科学,2018,46(3):14-20.
[48]FAN W, WU J G, LI J M, et al. Effects of straw return on soil physico-chemical properties of chernozem in northeast China and maize yield therein[J]. Acta Pedologica Sinica,2018,55(4):835-846.
[49]孙媛媛. 秸秆不同还田方式对北方稻田土壤理化性质及水稻产量的影响[D]. 沈阳:沈阳农业大学,2020.
[50]杨欣坤. 松辽平原玉米带主要土壤的水分特征研究[D]. 长春:吉林农业大学,2014.

相似文献/References:

[1]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(05):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
[2]王佳佳,奚永兰,常志州,等.秸秆快腐菌(Streptomyces rochei)对还田麦秸化感物质的响应[J].江苏农业学报,2016,(05):1081.[doi:10.3969/j.issn.1000-4440.2016.05.020]
 WANG Jia-jia,XI Yong-lan,CHANG Zhi-zhou,et al.Responding of a bacterium (Streptomyces rochei) quickly decomposing straw to allelochemicals in wheat straw returned to field[J].,2016,(05):1081.[doi:10.3969/j.issn.1000-4440.2016.05.020]
[3]孙小祥,常志州,靳红梅,等.太湖地区不同秸秆还田方式对作物产量与经济效益的影响[J].江苏农业学报,2017,(01):94.[doi:10.3969/j.issn.1000-4440.2017.01.015 ]
 SUN Xiao-xiang,CHANG Zhi-zhou,JIN Hong-mei,et al.Influence of different ways of straw incorporation on crop yield and economic benefit in the Taihu Lake Basin[J].,2017,(05):94.[doi:10.3969/j.issn.1000-4440.2017.01.015 ]
[4]王晓琳,张卓亚,伏进,等.秸秆还田条件下不同播种量结合除草剂对杂草和小麦生长的影响[J].江苏农业学报,2017,(02):307.[doi:doi:10.3969/j.issn.1000-4440.2017.02.011]
 WANG Xiao-lin,ZHANG Zhuo-ya,FU Jin,et al.Effects of seeding rate combined with herbicide application on weeds and wheat growth under the condition of rice straw returning[J].,2017,(05):307.[doi:doi:10.3969/j.issn.1000-4440.2017.02.011]
[5]吴东丽,李琪,薛红喜,等.山东省土壤水分时空分布规律及分区[J].江苏农业学报,2019,(03):639.[doi:doi:10.3969/j.issn.1000-4440.2019.03.019]
 WU Dong-li,LI Qi,XUE Hong-xi,et al.Spatial and temporal distribution and zoning of soil moisture in Shandong province[J].,2019,(05):639.[doi:doi:10.3969/j.issn.1000-4440.2019.03.019]
[6]陆水凤,王呈玉,王天野,等.玉米秸秆配施菌剂还田对土壤养分及腐殖质组成的影响[J].江苏农业学报,2019,(04):834.[doi:doi:10.3969/j.issn.1000-4440.2019.04.012]
 LU Shui feng,WANG Cheng yu,WANG Tian ye,et al.Effects of corn straw combined with microbial inoculum on soil nutrient and humus composition[J].,2019,(05):834.[doi:doi:10.3969/j.issn.1000-4440.2019.04.012]
[7]范如芹,周运来,李赟,等.秸秆发酵还田提升土壤腐殖质含量与品质[J].江苏农业学报,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
 FAN Ru-qin,ZHOU Yun-lai,LI Yun,et al.Straw fermentation incorporation improves soil humus content and quality[J].,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
[8]王廷峰,赵密珍,关玲,等.玉米套作及秸秆还田对草莓连作土壤养分及微生物区系的影响[J].江苏农业学报,2019,(06):1421.[doi:doi:10.3969/j.issn.1000-4440.2019.06.022]
 WANG Ting-feng,ZHAO Mi-zhen,GUAN-Ling,et al.Effects of intercropping with corn and straw returning on nutrients and microflora in strawberry continuous cropping soil[J].,2019,(05):1421.[doi:doi:10.3969/j.issn.1000-4440.2019.06.022]
[9]王娟娟,胡珈玮,狄霖,等.秸秆还田与氮肥运筹对水稻不同生育期土壤细菌群落结构的影响[J].江苏农业学报,2021,(06):1460.[doi:doi:10.3969/j.issn.1000-4440.2021.05.013]
 WANG Juan-juan,HU Jia-wei,DI Lin,et al.Effects of straw returning and nitrogen management on soil microbial community structure at different rice growth stages[J].,2021,(05):1460.[doi:doi:10.3969/j.issn.1000-4440.2021.05.013]
[10]赵懿,杜建军,张振华,等.秸秆还田方式对土壤有机质积累与转化影响的研究进展[J].江苏农业学报,2021,(06):1614.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
 ZHAO Yi,DU Jian-jun,ZHANG Zhen-hua,et al.Research progress on the effects of straw returning on soil organic matter accumulation and transformation[J].,2021,(05):1614.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]

备注/Memo

备注/Memo:
收稿日期:2023-05-04基金项目:吉林省自然科学基金项目(20210101100JC);国家现代农业产业技术体系建设专项(CARS-37)作者简介:赵政(1999-),男,内蒙古呼伦贝尔人,硕士研究生,从事土壤质量提升与养分循环研究。(E-mail)807026494@qq.com通讯作者:刘淑霞,(E-mail)liushuxia69@163.com
更新日期/Last Update: 2024-07-13