[1]武一,孙雪梅,杨世鹏,等.基于转录组的茎用莴苣抽薹相关差异表达基因分析[J].江苏农业学报,2024,(04):711-720.[doi:doi:10.3969/j.issn.1000-4440.2024.04.015]
 WU Yi,SUN Xue-mei,YANG Shi-peng,et al.Analysis of differentially expressed genes related to bolting in stem lettuce based on transcriptome data[J].,2024,(04):711-720.[doi:doi:10.3969/j.issn.1000-4440.2024.04.015]
点击复制

基于转录组的茎用莴苣抽薹相关差异表达基因分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
711-720
栏目:
园艺
出版日期:
2024-04-30

文章信息/Info

Title:
Analysis of differentially expressed genes related to bolting in stem lettuce based on transcriptome data
作者:
武一孙雪梅杨世鹏谭龙王丽慧
(青海大学农林科学院,青海省蔬菜遗传与生理重点实验室,青海西宁810016)
Author(s):
WU YiSUN Xue-meiYANG Shi-pengTAN LongWANG Li-hui
(Academy of Agriculture and Forestry Sciences, Qinghai University, Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China)
关键词:
茎用莴苣抽薹转录组差异表达基因
Keywords:
stem lettuceboltingtranscriptomedifferentially expressed genes
分类号:
S636.2
DOI:
doi:10.3969/j.issn.1000-4440.2024.04.015
摘要:
为探究影响茎用莴苣抽薹的相关关键基因,采用高通量转录组测序的方法,研究茎用莴苣产品器官收获期和抽薹期的差异表达基因。结果表明,茎用莴苣种质资源1号在产品器官收获期和抽薹期的差异表达基因数量为6 754个,茎用莴苣种质资源3号在产品器官收获期和抽薹期的差异表达基因数量为5 444个。基因本体(GO)功能富集分析结果表明,差异表达基因主要富集在结合、催化活性、细胞过程、代谢过程、细胞解剖实体等GO条目中。京都基因与基因组百科全书(KEGG)通路富集分析结果表明,茎用莴苣种质资源1号和茎用莴苣种质资源3号分别有133条和129条KEGG代谢通路,其中有128条代谢通路在2份种质资源中均被注释;差异表达基因富集较多的KEGG代谢通路有次生代谢物的生物合成、植物激素信号转导、植物-病原体的相互作用等。转录因子分析结果表明,茎用莴苣产品器官收获期和抽薹期的差异表达基因大多数属于AP2/ERF、bHLH、bZIP、C2H2、MYB、NAC、WRKY等转录因子家族。对茎用莴苣产品器官收获期和抽薹期差异表达基因的研究结果进行综合分析,发现在AP2/ERF、WRKY、bHLH等转录因子家族以及次生代谢物的生物合成、植物激素信号转导等通路中存在较多的差异表达基因,推测这些转录因子家族和代谢通路可能参与茎用莴苣抽薹的调控网络。本研究结果为解析茎用莴苣抽薹相关基因及其分子机制奠定了基础。
Abstract:
To explore the key genes influencing bolting in stem lettuce, high-throughput transcriptome sequencing was employed to study the differentially expressed genes during the organ harvesting and bolting periods of stem lettuce. The results revealed that there were 6 754 differentially expressed genes in stem lettuce germplasm resource No.1 during the organ harvesting period and bolting period, while stem lettuce germplasm resource No.3 had 5 444 differentially expressed genes during these periods. Gene ontology (GO) functional enrichment analysis indicated that differentially expressed genes were mainly enriched in GO entries such as binding, catalytic activity, cellular processes, metabolic processes, and cellular anatomical entities. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis showed that stem lettuce germplasm resource No.1 and stem lettuce germplasm resource No.3 had 133 and 129 KEGG metabolic pathways respectively, with 128 metabolic pathways annotated in both germplasm resources. KEGG metabolic pathways with a relatively higher enrichment of differentially expressed genes included biosynthesis of secondary metabolites, plant hormone signal transduction, and plant-pathogen interactions. Transcription factor analysis revealed that most of the differentially expressed genes during the organ harvesting and bolting periods of stem lettuce belonged to transcription factor families such as AP2/ERF, bHLH, bZIP, C2H2, MYB, NAC and WRKY. Comprehensive analysis results indicated that there were numerous differentially expressed genes in transcription factor families such as AP2/ERF, WRKY, bHLH, as well as pathways involving biosynthesis of secondary metabolites and plant hormone signal transduction. It was speculated that these transcription factor families and metabolic pathways could participate in the regulatory network of bolting in stem lettuce. These results can provide scientific basis for understanding the genes related to bolting in stem lettuce and their molecular mechanisms.

参考文献/References:

[1]袁庆军,杨昌煦. 四川莴苣属及近缘属10种植物的核型研究[J]. 西南农业大学学报,2002,24(1):30-33.
[2]毛学文,张海林,毛沛. 莴笋茎叶营养品质的分析比较[J]. 甘肃农业科技,2003(11):37.
[3]钱丽珠. 第二十六讲莴苣(八)[J]. 上海蔬菜,2001(2):42.
[4]张德双,徐家炳,张凤兰. 不同球色大白菜主要营养成分分析[J]. 中国蔬菜,2004(3):37.
[5]许伟,高品一,杨頔,等. 萝卜药食两用价值及其研究进展[J]. 宁夏农林科技,2014,55(2):90-94.
[6]HOU C C, LIN S J, CHENG J T, et al. Antidiabetic dimeric guianolides and a lignan glycoside from Lactuca indica[J]. Journal of Natural Products,2003,66(5):625-629.
[7]戴国辉,孙志栋,吴海军,等. 莴笋的营养保健价值及其加工开发[J]. 农产品加工(学刊),2008(11):43-46.
[8]孙桂文,滑桂顺,赵增林,等. 莴笋高产栽培技术要点[J]. 北京农业,2010(6):14-17.
[9]卢汪友. 莴笋周年无公害优质高产栽培技术[J]. 安徽农学通报,2013,19(20):52-53.
[10]裴芸,张超省,田山君,等. 不同昼夜温差处理对萝卜抽薹及开花特性的影响[J]. 北方园艺,2018(11):1-8.
[11]黎黎,刘娟,阳梦瑶,等. 低温春化与光周期调控对普通白菜抽薹性状的影响[J]. 中国瓜菜,2021,34(5):45-51.
[12]齐仙惠,巫东堂,李改珍,等. 拟南芥成花调控途径的研究进展[J]. 山西农业大学学报(自然科学版),2018,38(9):1-7,36.
[13]王茹梦,刘忠松. 甘蓝型油菜开花期全基因组关联分析及开花基因标记开发[J]. 分子植物育种,2021,19(10):3329-3338.
[14]张利利,郝敬虹,韩莹琰,等. 温度对叶用莴苣春化的影响[J]. 应用生态学报,2016,27(11):3600-3606.
[15]CHEN Z, HAN Y, NING K, et al. Inflorescence development and the role of LsFT in regulating bolting in lettuce (Lactuca sativa L.)[J]. Frontiers in Plant Science,2018,8:2248.
[16]NING K, HAN Y Y, CHEN Z J, et al. Genome-wide analysis of MADS-box family genes during flower development in lettuce[J]. Plant,Cell & Environment,2019,42(6):1868-1881.
[17]HAN Y, CHEN Z, LYU S, et al. MADS-box genes and gibberellins regulate bolting in lettuce (Lactuca sativa L.)[J]. Frontiers in Plant Science,2016,7:1889.
[18]LIU X Y, LYU S S, LIU R, et al. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.)[J]. PLoS One,2018,13(2):e0191518.
[19]WANG S L, LUO C, SUN L, et al. LsRGL1 controls the bolting and flowering times of lettuce by modulating the gibberellin pathway[J]. Plant Science,2022,316:111175.
[20]QUINT M, GRAY W M. Auxin signaling[J]. Current Opinion in Plant Biology,2006,9(5):448-453.
[21]王璐. 叶用莴苣LsSTPK和LsMAPK4基因的克隆与LsSTPK基因在抽薹中的功能分析[D]. 北京:北京农学院,2019.
[22]WANG L, WU Y, DU W, et al. Virus-induced gene silencing (VIGS) analysis shows involvement of the LsSTPK gene in lettuce (Lactuca sativa L.) in high temperature-induced bolting[J]. Plant Signaling & Behavior,2021,16(7):1913845.
[23]李婷,韩莹琰,范双喜,等. 叶用莴苣2个Hsp70基因与其抽薹的相关性分析[J]. 中国农学通报,2015,31(10):58-62.
[24]胡小蓉,马燕,臧德奎,等. 芍药芽总RNA提取方法的研究[J]. 山东农业科学,2015,47(2):16-20.
[25]KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[26]VARET H, BRILLET G L, COPPE J, et al. SARTools: a DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data[J]. PLoS One,2016,11(6):e0157022.
[27]ZHENG Y, JIAO C, SUN H H, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases[J]. Molecular Plant,2016,9(12):1667-1670.
[28]郑云,崔芳芳,郑九洲,等. 烟草雄性不育突变转录组相关差异表达基因分析[J]. 西南农业学报,2022,35(8):1733-1741.
[29]刘洋,卢凯政,卞少杰,等. 田间自然温度调控下核桃根系差异表达基因分析[J]. 北方园艺,2020(17):30-38.
[30]杨宇婷,张强. 甜叶菊多倍体变异机制的转录组及SSR分析[J]. 江苏农业科学,2023,51(2):44-50.
[31]赵航,贾富强,张富春,等. 盐胁迫下盐穗木差异表达基因的转录组信息分析[J]. 生物信息学,2014,12(2):90-98.
[32]何平,李林光,王海波,等. 遮光性套袋对桃果实转录组的影响[J]. 中国农业科学,2017,50(6):1088-1097.
[33]黄琼林. 高良姜转录组差异表达基因分析[J]. 中药材,2020,43(3):553-557.
[34]孙永涛,王旭强. 夏秋季茎用莴苣适应性栽培试验[J]. 上海蔬菜,2013(1):20,82.
[35]马彦霞,王晓巍,张俊峰,等. 茎用莴苣品种适应性及适宜密度和栽培方式研究[J]. 北方园艺,2016(13):36-39.
[36]PFEIFFER N, TRNKNER C, LEMNIAN I, et al. Genetic analysis of bolting after winter in sugar beet (Beta vulgaris L.)[J]. Theoretical and Applied Genetics,2014,127(11):2479-2489.
[37]苏贺楠,张利利,刘超杰,等. 高温诱导叶用莴苣抽薹过程中细胞形态的变化[J]. 北京农学院学报,2016,31(2):53-57.
[38]段俊枝,杨翠苹,王楠,等. WRKY转录因子在植物耐盐基因工程中的应用进展[J]. 江苏农业科学,2023,51(5):71-80.
[39]陈亚辉,张师,杨庆山,等. 多枝柽柳叶片响应NaCl胁迫的转录组分析[J]. 江苏农业学报,2022,38(5):1188-1202.
[40]王剑超,邱文敏,金康鸣,等. 伴矿景天WRKY基因家族鉴定及镉胁迫响应分析[J]. 南京林业大学学报(自然科学版),2023,47(2):49-60.
[41]张婷,柏杨,亓希武,等. 薄荷MhWRKY57基因克隆及响应茉莉酸信号的表达分析[J]. 南京林业大学学报(自然科学版),2022,46(6):279-287.
[42]尹梦莹,蔚亚楠,杜光辉,等. 蒜芥茄SsWRKY1基因克隆及黄萎病病原菌胁迫下表达分析[J]. 南方农业学报,2022,53(4):1000-1010.
[43]高磊,李慧,郑焕,等. 果树中花色苷的生物合成及其调控机制研究进展[J]. 江苏农业学报,2022,38(1):258-267.
[44]王彩云,张晓东,沈涛,等. WRKY在植物次生代谢物合成中的作用及研究进展[J]. 广东农业科学,2013,40(20):137-144.
[45]SHANG Y, YAN L, LIU Z Q, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. The Plant Cell,2010,22(6):1909-1935.
[46]ISHIDA T, HATTORI S, SANO R, et al. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation[J]. The Plant Cell,2007,19(8):2531-2543.
[47]王芳秀,黎舒佳,余迪求. WRKY25过量表达导致拟南芥在长光照下开花提前[J]. 植物分类与资源学报,2011,33(6):653-659.
[48]苏蔚,肖柳英,孙光闻,等. 转录因子BcWRKY22在低温促进菜心抽薹开花中的功能分析[J]. 分子植物育种,2020,18(12):3862-3870.
[49]李超. 棉花GbWRKY1在植物发育及防御反应中的功能分析[D]. 武汉:华中农业大学,2014.
[50]郭溆,罗红梅,宋经元,等. 糖基转移酶在植物次生代谢途径中的研究进展[J]. 世界科学技术(中医药现代化),2012,14(6):2126-2130.
[51]周雯. 甘蓝TT8及WD40转录因子影响花青素合成及开花时间的研究[D]. 重庆:西南大学,2017.
[52]宋建辉. bHLH113调控拟南芥开花和花青素合成的分子机制研究[D]. 杭州:浙江农林大学,2020.
[53]谢德金,叶友杰,杨德明,等. 基于巴戟天转录组数据的R2R3-MYB转录因子的鉴定和分析[J]. 药学学报,2020,55(1):160-167.
[54]闻可心,刘雪梅. AP2功能基因在植物花发育中的重要作用[J]. 生物技术通报,2010(2):1-7.
[55]YANT L, MATHIEU J, DINH T T, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2[J]. The Plant Cell,2010,22(7):2156-2170.
[56]宋康华,黎宇婷,张鲁斌. AP2/ERF转录因子调控果实品质研究进展[J]. 热带作物学报,2019,40(5):1032-1040.
[57]FENG G Y, HUANG L K, LI J, et al. Comprehensive transcriptome analysis reveals distinct regulatory programs during vernalization and floral bud development of orchardgrass (Dactylis glomerata L.)[J]. BMC Plant Biology,2017,17.DOI:10.1186/s12870-017-1170-8.

相似文献/References:

[1]王祺,蒲媛媛,赵玉红,等.强冬性甘蓝型冬油菜抽薹相关基因SVP和SOC1的克隆与表达分析[J].江苏农业学报,2020,(05):1088.[doi:doi:10.3969/j.issn.1000-4440.2020.05.003]
 WANG Qi,PU Yuan-yuan,ZHAO Yu-hong,et al.Cloning and expression analysis on bolting related genes SVP and SOC1 in strong winterness Brassica napus L.[J].,2020,(04):1088.[doi:doi:10.3969/j.issn.1000-4440.2020.05.003]

备注/Memo

备注/Memo:
收稿日期:2023-03-21基金项目:青海省科学技术厅基础研究项目(2022-ZJ-745);国家重点研发项目(2022YFD1602400)作者简介:武一(1998-),女,河南驻马店人,硕士研究生,主要从事蔬菜遗传育种研究。(E-mail)wuyi77abc@163.com通讯作者:王丽慧,(E-mail)qhwlhwlh@126.com
更新日期/Last Update: 2024-05-22