参考文献/References:
[1]佚名. 2022年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊,2022,42(4):107-108.
[2]赵立新,侯发东,吕正超,等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报,2020,36(7):184-191.
[3]刘阳,高国琴. 采用改进的 SqueezeNet 模型识别多类叶片病害[J]. 农业工程学报,2021,37(2):187-195.
[4]鲍文霞,吴德钊,胡根生,等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报,2021,37(16):145-152.
[5]ESPEJO-GARCIA B, MALOUNAS I, MYLONAS N, et al. Using EfficientNet and transfer learning for image-based diagnosis of nutrient deficiencies[J]. Computers and Electronics in Agriculture,2022,196:106868.
[6]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. Piscataway: IEEE,2018:7132-7141.
[7]赵辉,曹宇航,岳有军,等. 基于改进 DenseNet 的田间杂草识别[J]. 农业工程学报,2021,37(18):136-142.
[8]WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. Piscataway:IEEE,2020:11531-11539.
[9]孙俊,朱伟栋,罗元秋,等. 基于改进 MobileNet-V2 的田间农作物叶片病害识别[J]. 农业工程学报,2021,37(22):161-169.
[10]甘雨,郭庆文,王春桃,等. 基于改进 EfficientNet 模型的作物害虫识别[J]. 农业工程学报,2022,38(1):203-211.
[11]HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]. Piscataway:IEEE, 2021.
[12]WU X, ZHAN C, LAI Y K, et al. IP102: a large-scale benchmark dataset for insect pest recognition[C]. Piscataway:IEEE, 2019.
[13]ZHAO Y, SUN C, XU X, et al. RIC-Net: a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism[J]. Computers and Electronics in Agriculture, 2022,193:106644.
[14]ZHAO X, LI K, LI Y, et al. Identification method of vegetable diseases based on transfer learning and attention mechanism[J]. Computers and Electronics in Agriculture,2022,193:106703.
[15]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Piscataway:IEEE,2016:770-778.
[16]SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]. Piscataway: IEEE,2018:4510-4520.
[17]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Piscataway:IEEE,2017.
[18]TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]. Madison:ACM,2019.
[19]YANG Z, ZHU L, WU Y, et al. Gated channel transformation for visual recognition[C]. Piscataway:IEEE,2020.
[20]SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C]. Piscataway:IEEE,2017.
相似文献/References:
[1]陆煜,俞经虎,朱行飞,等.基于卷积神经网络的轻量级水稻叶片病害识别模型[J].江苏农业学报,2024,(02):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
LU Yu,YU Jing-hu,ZHU Xing-fei,et al.A lightweight rice leaf disease recognition model based on convolutional neural network[J].,2024,(04):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]