参考文献/References:
[1]LIPIZER M, PARTESCANO E, RABITTI A, et al. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea[J]. Ocean Science,2014,10(5):771-797.
[2]陈英义,程倩倩,方晓敏,等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报,2018,34(17):183-191.
[3]金光炎. 水文统计理论与实践[M]. 南京:东南大学出版社,2012.
[4]刘明,李由明,王平,等. 基于小波分解的凡纳滨对虾养殖水体水质的仿真研究[J]. 广东农业科学,2013,40(17):170-172.
[5]徐梅,晏福,刘振忠,等. 灰色GM(1,1)-小波变换-GARCH组合模型预测松花江流域水质[J]. 农业工程学报,2016,32(10):137-142.
[6]岳遥,李天宏. 基于模糊集理论的马尔可夫模型在水质定量预测中的应用[J]. 应用基础与工程科学学报,2011,19(2):231-242.
[7]黄廷林,韩晓刚,卢金锁. 基于Lyapunov指数的混沌预测方法及在水质预测中的应用[J]. 西安建筑科技大学学报(自然科学版),2008,40(6):846-851.
[8]ALVAREZ MEZA A M, DAZA SANTACOLOMA G. Parameter selection in least squares support vector machines regression oriented,using generalized cross-validation[J]. Dyna-Colombia,2012,79(171):23-30.
[9]邹志红,王学良. BP模型在河流水质预测中的误差分析[J].环境科学学报,2007,27(6):1038-1042.
[10]AMID S, GUNDOSHMIAN T M. Prediction of output energies for broiler production using linear regression, ANN (MLP, RBF), and ANFIS models[J]. Environmental Progress & Sustainable Energy,2017,36(2):577-585.
[11]刘东君,邹志红. 最优加权组合预测法在水质预测中的应用研究[J]. 环境科学学报,2012,32(12):3128-3132.
[12]刘双印,徐龙琴,李振波,等. 基于PCA-MCAFA-LSSVM的养殖水质pH值预测模型[J]. 农业机械学报,2014,45(5):239-246.
[13]龚怀瑾,毛力,杨弘. 基于变尺度混沌QPSO-LSSVM的水质溶氧预测建模[J]. 计算机与应用化学,2013,30(3):315-318.
[14]孙伯寅,董国庆,张荣. 支持向量机在水源水化学耗氧量预测中的应用[J]. 环境与健康杂志,2016,33(6):544-547.
[15]罗华军,黄应平,刘德富. 基于WA-SVM的水库溶解氧预测[J]. 西北农林科技大学学报(自然科学版),2009,37(3):181-186.
[16]宦娟,刘星桥. 基于K-means聚类和ELM神经网络的养殖水质溶解氧预测[J]. 农业工程学报,2016,32(17):174-181.
[17]陈英义,方晓敏,梅思远,等. 基于WT-CNN-LSTM的溶解氧含量预测模型[J]. 农业机械学报,2020,51(10):284-291.
[18]曹守启,周礼馨,张铮. 采用改进长短时记忆神经网络的水产养殖溶解氧预测模型[J]. 农业工程学报,2021,37(14):235-242.
[19]WU Y H, SUN L Q, SUN X B, et al. A hybrid XGBoost-ISSA-LSTM model for accurate short-term and long-term dissolved oxygen prediction in ponds[J]. Environ Sci Pollut Res Int,2021,29(12):18142-18159.
[20]YANG H H, LIU S E. Water quality prediction in sea cucumber farming based on a GRU neural network optimized by an improved whale optimization algorithm[J]. PeerJ Comput Sci,2022,8:e1000.
[21]ZOU Q H, XIONG Q Y, LI Q D, et al. A water quality prediction method based on the multi-time scale bidirectional long short-term memory network[J]. Environmental Science and Pollution Research,2020,27(9):16853-16864.
[22]YANG W B, LIU W, GAO Q. Prediction of dissolved oxygen concentration in aquaculture based on attention mechanism and combined neural network[J]. Math Biosci Eng,2023,20(1):998-1017.
[23]ZHANG Q, WANG R Q, QI Y, et al. A watershed water quality prediction model based on attention mechanism and Bi-LSTM[J]. Environmental Science and Pollution Research,2022,29(50):75664-75680.
[24]LI Y T, LI R. Predicting ammonia nitrogen in surface water by a new attention-based deep learning hybrid model[J]. Environmental Research,2023,216:114723.
[25]CAO X K, LIU Y R, WANG J P, et al. Prediction of dissolved oxygen in pond culture water based on K-means clustering and gated recurrent unit neural network[J]. Aquacultural Engineering, 2020,91:102122.
[26]何津民,张丽珍. 基于自注意力机制和CNN-LSTM深度学习的对虾投饵量预测模型[J]. 大连海洋大学学报,2022,37(2):304-311.
相似文献/References:
[1]刘国锋,徐跑,吴霆,等.中国水产养殖环境氮磷污染现状及未来发展思路[J].江苏农业学报,2018,(01):225.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
LIU Guo-feng,XU Pao,WU Ting,et al.Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy[J].,2018,(03):225.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
[2]任妮,鲍彤,刘杨,等.基于粒子群优化算法和长短时记忆神经网络的蟹塘溶解氧预测[J].江苏农业学报,2021,(02):426.[doi:doi:10.3969/j.issn.1000-4440.2021.02.020]
REN Ni,BAO Tong,LIU Yang,et al.Prediction model of dissolved oxygen in Chinese mitten crab ponds based on particle swarm optimization algorithm and long short-term memory neural networks[J].,2021,(03):426.[doi:doi:10.3969/j.issn.1000-4440.2021.02.020]
[3]唐毅,徐全,杜彬,等.基于SARIMA-VMD-LSSVM的水产养殖溶解氧质量浓度预测[J].江苏农业学报,2024,(08):1473.[doi:doi:10.3969/j.issn.1000-4440.2024.08.012]
TANG Yi,XU Quan,DU Bin,et al.Prediction of dissolved oxygen mass concentration in aquaculture based on SARIMA-VMD-LSSVM[J].,2024,(03):1473.[doi:doi:10.3969/j.issn.1000-4440.2024.08.012]