[1]ÃçÓñ½Ü,ÍôÔºÉú,¹ùÎ÷ÑÇ,µÈ.ÅòÈóÍÁ¸ÄÐÔ΢ÄÒÔå»ùÉúÎïÌ¿¶ÔCr(¢ö)µÄÎü¸½ÐÔÄÜ[J].½­ËÕũҵѧ±¨,2024,(02):270-280.[doi:doi:10.3969/j.issn.1000-4440.2024.02.009]
¡¡MIAO Yu-jie,WANG Yuan-sheng,GUO Xi-ya,et al.Adsorption properties of bentonite-modified Microcystis-based biochar to Cr(¢ö)[J].,2024,(02):270-280.[doi:doi:10.3969/j.issn.1000-4440.2024.02.009]
µã»÷¸´ÖÆ

ÅòÈóÍÁ¸ÄÐÔ΢ÄÒÔå»ùÉúÎïÌ¿¶ÔCr(¢ö)µÄÎü¸½ÐÔÄÜ()
·ÖÏíµ½£º

½­ËÕũҵѧ±¨[ISSN:1006-6977/CN:61-1281/TN]

¾í:
ÆÚÊý:
2024Äê02ÆÚ
Ò³Âë:
270-280
À¸Ä¿:
¸û×÷ÔÔÅࡤ×ÊÔ´»·¾³
³ö°æÈÕÆÚ:
2024-02-25

ÎÄÕÂÐÅÏ¢/Info

Title:
Adsorption properties of bentonite-modified Microcystis-based biochar to Cr(¢ö)
×÷Õß:
ÃçÓñ½Ü12 ÍôÔºÉú3 ¹ùÎ÷ÑÇ4 ÁºÇ컪3 ¬ÐÅ5 µË½¨²Å1
(1.Öйú¿ÆѧԺÄϾ©µØÀíÓëºþ²´Ñо¿Ëùºþ²´Óë»·¾³¹ú¼ÒÖصãʵÑéÊÒ,½­ËÕÄϾ©210008£»2.Öйú¿ÆѧԺ´óѧ,±±¾©100049£»3.½­ËÕÊ¡Ì«ºþË®Àû¹æ»®Éè¼ÆÑо¿ÔºÓÐÏÞ¹«Ë¾,½­ËÕËÕÖÝ215128;4.½­ËÕÊ¡»·¾³¹¤³Ì¼¼ÊõÓÐÏÞ¹«Ë¾,½­ËÕÄϾ©210019;5.½­ËÕÊ¡Å©Òµ¿ÆѧԺũҵ×ÊÔ´Óë»·¾³Ñо¿Ëù,½­ËÕÄϾ©210014)
Author(s):
MIAO Yu-jie12WANG Yuan-sheng3GUO Xi-ya4LIANG Qing-hua3LU Xin5DENG Jian-cai1
(1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008£¬China;2.University of Chinese Academy of Sciences, Beijing 100049£¬ China;3.Jiangsu Taihu Planning and Design Institute of Water Resources Co., Ltd., Suzhou 215128£¬ China;4.Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019£¬ China;5.Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014£¬ China)
¹Ø¼ü´Ê:
΢ÄÒÔå»ùÉúÎïÌ¿ÅòÈóÍÁCr(¢ö)Îü¸½
Keywords:
Microcystis-based biocharbentoniteCr(¢ö)adsorption
·ÖÀàºÅ:
X52
DOI:
doi:10.3969/j.issn.1000-4440.2024.02.009
ÕªÒª:
Õë¶Ô¸ß¶¾ÐÔº¬¸õ·ÏË®´¦ÀíÄÑ¡¢Ë®»ªÔåÀà×ÊÔ´»¯ÀûÓÃÂʵ͵ÈÎÊÌ⣬±¾Ñо¿ÄâÖƱ¸ÅòÈóÍÁ¸ÄÐÔ΢ÄÒÔå»ùÉúÎïÌ¿(BMC)£¬Ê¹ÓÃɨÃèµç¾µ¡¢XÉäÏßÑÜÉäºÍ±È±íÃæ»ý·ÖÎöµÈ·½·¨¶ÔʹÓÃÅòÈóÍÁ¸ÄÐÔÇ°ºóµÄ΢ÄÒÔå»ùÉúÎïÌ¿µÄÊôÐÔ½øÐбíÕ÷£¬Ñо¿³õʼpH¡¢ÉúÎï̿Ͷ¼ÓÁ¿¶Ô¸ÄÐÔÇ°ºó΢ÄÒÔå»ùÉúÎïÌ¿Îü¸½Cr(¢ö)Ч¹ûµÄÓ°Ï죬²¢¶ÔÎü¸½¹ý³Ì½øÐж¯Á¦Ñ§ºÍµÈÎÂÄ£ÐÍÄâºÏ¡£½á¹û±íÃ÷£¬ÅòÈóÍÁ¸ÄÐÔºó΢ÄÒÔå»ùÉúÎïÌ¿±íÃæ¹ÙÄÜÍźÍÑôÀë×Ó½»»»ÈÝÁ¿¾ù´ó·ùÔö¼Ó£¬¸ÄÐÔÇ°ºó΢ÄÒÔå»ùÉúÎïÌ¿¶ÔCr(¢ö)µÄÎü¸½¹ý³Ì¾ù·ûºÏ×¼¶þ¼¶¶¯Á¦Ñ§Ä£ÐͺÍLangmuirµÈÎÂÄ£ÐÍ£»ÔÚpH=2¡¢Í¶¼ÓÁ¿Îª2 g/LµÄÊÔÑéÌõ¼þÏ£¬¸ÄÐÔ΢ÄÒÔå»ùÉúÎïÌ¿¶ÔCr(¢ö)µÄ±¥ºÍÎü¸½ÈÝÁ¿´ïµ½10.87 mg/g£¬ÊǸÄÐÔǰ΢ÄÒÔå»ùÉúÎïÌ¿(MC) ±¥ºÍÎü¸½ÈÝÁ¿µÄ3.94±¶£¬Î¢ÄÒÔå»ùÉúÎïÌ¿¸ÄÐÔºóÏÔÖø´Ù½øÁ˶ÔCr(¢ö)µÄÎü¸½£»¾²µçÎü¸½ºÍÑõ»¯»¹Ô­×÷ÓÃÊÇ΢ÄÒÔå»ùÉúÎïÌ¿È¥³ýCr(¢ö)µÄÖ÷Òª»úÖÆ¡£±¾Ñо¿³É¹û¿ÉΪº¬¸õ·ÏË®´¦ÀíÌṩз½·¨£¬²¢¿ÉΪˮ»ªÔåÀàµÄ×ÊÔ´»¯ÀûÓÃÌṩÐÂ˼·¡£
Abstract:
Aiming at the problems such as difficult treatment of highly toxic chromium-containing wastewater and poor efficiency of resource utilization of algae, bentonite-modified Microcystis-based biochar (BMC) was to be prepared in this study. The properties of Microcystis-based biochar before and after modified by bentonite were characterized by scanning electron microscope, X-ray diffraction and specific surface area analysis. The effects of initial pH and biochar dosage on the Cr(¢ö) adsorption of Microcystis-based biochar before and after modified were studied, and the adsorption processes were fitted by kinetic and isothermal models. The results show that, the surface functional groups and cation exchange capacity of Microcystis-based biochar increased significantly after modified by bentonite, and the adsorption process of Cr(¢ö) by the Microcystis-based biochar before and after modified were all characterized by the quasi-secondary kinetic model and Langmuir isothermal model. Under the experimental conditions of pH=2 and dosage of 2 g/L, the saturated adsorption capacity of Cr(¢ö) by modified Microcystis-based biochar reached 10.87 mg/g, which was 3.94 times of Microcystis-based biochar (MC) before modification. The adsorption of Cr(¢ö) was significantly promoted by the modified Microcystis-based biochar. Electrostatic adsorption and redox were the key mechanisms for Cr(¢ö) removal by Microcystis-based biochar. The research results can provide new methods for the treatment of chromium-containing wastewater and new ideas for resource utilization of algae blooms.

²Î¿¼ÎÄÏ×/References:

[1]ÀîÃ÷Óñ. ÉúÎïÌ¿µ÷½Úð¤ÍÁ¸²¸Ç²ãµÄÉø͸ÌØÐÔ¼°ÆäÓ°Ïì»úÖÆ[J]. ÅŹà»úе¹¤³Ìѧ±¨,2023,41(5):505-510.
[2]÷æÃ,ÀîÑó,ËÎÌì˳,µÈ. ¸ÄÁ¼¼Á½áºÏÓðë·¢½ÍҺʩÓöԴµÌîÍÁµÄ¸ÄÁ¼Ð§¹û[J]. ÉúÎï¼Ó¹¤¹ý³Ì,2022,20(5):558-564.
[3]SON E B, POO K M, CHANG J S, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass[J]. Science of the Total Environment,2018,615:161-168.
[4]ÕÔÅô,»ÆÕ¼±ó,ÈÎÖÒÐã,µÈ. ÖйúÖ÷ÒªÍË»¯ÍÁÈÀµÄ¸ÄÁ¼¼ÁÑо¿ÓëÓ¦ÓýøÕ¹[J]. ÅŹà»úе¹¤³Ìѧ±¨,2022,40(6):618-625.
[5]ÁõÀöÖé,·¶ÈçÇÛ,¬ÐÅ,µÈ. Å©Òµ·ÏÆúÎïÉúÎïÖÊÌ¿ÔÚÉèÊ©ÔÔÅàÖÐÓ¦ÓõÄÑо¿½øÕ¹[J]. ½­ËÕũҵѧ±¨,2016,32(6):1434-1440.
[6]ÍõÊÀ±ó,¸ßÅåÁá,ÕÔÑǶ«,µÈ. ΢ÏÌË®¶ÔÉúÎïÌ¿×÷ÓÃÏÂÑμîÍÁË®ÑÎÔËÒÆÌØÕ÷µÄÓ°Ïì[J]. ÅŹà»úе¹¤³Ìѧ±¨,2022,40(2):181-187.
[7]²·Ð¡Ñà. ¸´ºÏÌí¼Ó¼ÁÏÂ΢ÔåµÄ΢²¨ÈȽâÌØÐÔ¼°¶¯Á¦Ñ§Ñо¿[D]. ÄÏÄþ£º¹ãÎ÷´óѧ,2020.
[8]À´ÕÅ»ã,Îâɽ,À,µÈ. ²»Í¬ÈȽâζȵĽոÑÔ´ÉúÎïÌ¿¶ÔCd(¢ò)Îü¸½»úÀí[J]. Äϲý´óѧѧ±¨(Àí¿Æ°æ),2022,46(4):446-453.
[9]Ò¶½õÉØ,Òü»ª,Åí»Ô,µÈ. ¸ßЧÉúÎïÎü¸½¼Á´¦Àíº¬¸õ·ÏË®[J]. Öйú»·¾³¿Æѧ,2005(2):245-248.
[10]ÀîÏþÐÇ,Óá´ÓÕý,ÂíÐËÔª. ÖƸï·ÏË®´¦ÀíµÄÑо¿½øÕ¹[J]. ÖйúƤ¸ï,2003(19):26-31.
[11]´÷Ôó¾ü,Àî±þÌÃ,ÀîÅô·É,µÈ. Ñ̳§ÎÛÄàÈȽâÖƱ¸ÔØÌúÉúÎïÌ¿Îü¸½Ë®ÖÐCr(¢ö)µÄÑо¿[J]. »·¾³¿ÆѧÓë¼¼Êõ,2020,43(11):116-123.
[12]DING K, ZHOU X, HADIATULLAH H, et al. Removal performance and mechanisms of toxic hexavalent chromium [Cr(¢ö)] with ZnCl2 enhanced acidic vinegar residue biochar[J]. Journal of Hazardous Materials,2021,420:126551.
[13]BIRD M I, WURSTER C M, DE PAULA SILVA P H, et al. Algal biochar:effects and applications[J]. GCB Bioenergy,2012,4(1):61-69.
[14]ÍõȺ. ÉúÎïÖÊÔ´ºÍÖƱ¸Î¶ȶÔÉúÎïÌ¿¹¹Ð§µÄÓ°Ïì[D]. ÉϺ££ºÉϺ£½»Í¨´óѧ,2013.
[15]LAYSANDRA L, SANTOSA F, AUSTEN V, et al. Rarasaponin-bentonite-activated biochar from durian shells composite for removal of crystal violet and Cr(¢ö) from aqueous solution[J]. Environmental Science and Pollution Research,2018,25:30680-30695.
[16]WANG H, YANG N C, QIU M Q. Adsorption of Cr(¢ö) from aqueous solution by biochar-clay derived from clay and peanut shell[J]. Journal of Inorganic Materials,2020,35(3):301-308.
[17]SHEN Z T, JIN F, WANG F, et al. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood[J]. Bioresource Technology,2015,193:553-556.
[18]LIU N, ZHANG Y T, XU C, et al. Removal mechanisms of aqueous Cr(¢ö) using apple wood biochar: a spectroscopic study[J]. Journal of Hazardous Materials,2020,384:121371.
[19]ÖìÒíÑó. ÌúÃÌÑõ»¯Îï-ÉúÎïÌ¿¸´ºÏ²ÄÁ϶ÔË®ÖÐCr(¢ö)µÄÎü¸½ÐÔÄÜÑо¿[D]. ¹ãÖÝ£º¹ã¶«¹¤Òµ´óѧ,2020.
[20]KEILUWEIT M, NICO P, JOHNSON M, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology,2010,44:1247-1253.
[21]LEE J W, KIDDER M, EVANS B R, et al. Characterization of biochars produced from cornstovers for soil amendment[J]. Environmental Science & Technology,2010,44(20):7970-7974.
[22]SHI S, YANG J, LIANG S, et al. Enhanced Cr(¢ö) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles[J]. Science of the Total Environment,2018,628/629:499-508.
[23]MOHAN D, PITTMAN C U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water[J]. Journal of Hazardous Materials,2006,137(2):762-811.
[24]TAN K L, HAMEED B H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,74:25-48.
[25]BULUT E, ¦ZZACAR M, ÿðþ ‰C ENGIL ¦P A. Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design[J]. Microporous and Mesoporous Materials,2008,115(3):234-246.
[26]ZHOU Y, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology,2014,152:538-542.
[27]CHEN T, ZHOU Z Y, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology,2015,190:388-394.
[28]HAMED M M, RIZK H E, AHMED I M. Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent[J]. Journal of Molecular Liquids,2018,249:361-370.
[29]ÕŲ©,Àî½Ü,̸¹ã²Å,µÈ. ÉúÎïÌ¿¶ÔË«·ÓAºÍ17¦Á-ÒÒȲ»ù´Æ¶þ´¼ÔÚÍÁÈÀÖÐÎü¸½µÄÓ°Ïì[J]. »·¾³¹¤³Ìѧ±¨,2016,10(9):5255-5261.
[30]LENG L, YUAN X Z, HUANG H J, et al. Bio-char derived from sewage sludge by liquefaction:characterization and application for dye adsorption[J]. Applied Surface Science,2015,346:223-231.
[31]LI M Z, WU G H, LIU Z H, et al. Uniformly coating ZnAl layered double oxide nanosheets with ultra-thin carbon by ligand and phase transformation for enhanced adsorption of anionic pollutants[J]. Journal of Hazardous Materials,2020,397:122766.

±¸×¢/Memo

±¸×¢/Memo:
ÊÕ¸åÈÕÆÚ£º2023-02-07»ù½ðÏîÄ¿£º¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÏîÄ¿(32273137)£»¹ú¼ÒË®ÌåÎÛȾ¿ØÖÆÓëÖÎÀí¿Æ¼¼ÖØ´óרÏî(2017ZX07205-02)×÷Õß¼ò½é£ºÃçÓñ½Ü£¨1997-£©£¬ÄУ¬ºÓÄϼÃÔ´ÈË£¬Ë¶Ê¿Ñо¿Éú£¬Ö÷ÒªÑо¿·½ÏòΪºþ²´Éú̬»·¾³ÓëÎÛȾÐÞ¸´¡£(E-mail) 1037792265@163.comͨѶ×÷ÕߣºµË½¨²Å£¬£¨E-mail£©jcdeng@niglas.ac.cn
¸üÐÂÈÕÆÚ/Last Update: 2024-03-17