[1]宋燕芳,彭彤,马少兰,等.枸杞叶片酚酸类物质的自毒作用分析[J].江苏农业学报,2024,(02):213-222.[doi:doi:10.3969/j.issn.1000-4440.2024.02.003]
 SONG Yan-fang,PENG Tong,MA Shao-lan,et al.Analyzing the autotoxicity of phenolic acids from Lycium barbarum L. leaves[J].,2024,(02):213-222.[doi:doi:10.3969/j.issn.1000-4440.2024.02.003]
点击复制

枸杞叶片酚酸类物质的自毒作用分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年02期
页码:
213-222
栏目:
遗传育种·生理生化
出版日期:
2024-02-25

文章信息/Info

Title:
Analyzing the autotoxicity of phenolic acids from Lycium barbarum L. leaves
作者:
宋燕芳12彭彤12马少兰3马彩霞4高娜12李凯乐12张传继12蒲美运12纳小凡12
(1.兰州大学生命科学学院,甘肃兰州730000;2.细胞活动与逆境适应教育部重点实验室,甘肃兰州730000;3.彭阳县第一中学,宁夏固原756500;4.宁夏大学生命科学学院,宁夏银川750021)
Author(s):
SONG Yan-fang12PENG Tong12MA Shao-lan3MA Cai-xia4GAO Na12LI Kai-le12ZHANG Chuan-ji12PU Mei-yun12NA Xiao-fan12
(1.School of Life Sciences, Lanzhou University, Lanzhou 730000, China;2.Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou 730000, China;3.Pengyang No.1 Middle School, Guyuan 756500, China;4.School of Life Sciences, Ningxia University, Yinchuan 750021, China)
关键词:
枸杞连作障碍自毒物质叶片酚酸
Keywords:
Lycium barbarum L.continuous cropping obstacleautotoxinsleafphenolic acid
分类号:
S567.19
DOI:
doi:10.3969/j.issn.1000-4440.2024.02.003
摘要:
自毒作用是植物连作障碍形成的主要原因之一,严重影响植物生长和粮食生产。前期研究结果表明,土壤微生物多样性下降、土传病害加重是枸杞园连作障碍形成的重要原因,但枸杞残体的自毒作用及其物质基础目前仍不明确。为探讨自毒物质的主要来源,本研究对比分析了枸杞(Lycium barbarum L.)叶、茎、根等组织浸提液对枸杞幼苗生长的影响。浓度梯度试验结果表明,叶片浸提液的抑制效应高于根、老根皮及茎浸提液。向无枸杞种植历史的农田土壤中添加枸杞叶片干粉能够显著抑制枸杞幼苗生长及叶片光合作用,证实了枸杞叶片具有自毒作用。联合UPLC-QTOF-MS和GC-TOF-MS技术对生长季末期枸杞叶片进行代谢组分析,共鉴定出有机酸112种、醇类41种、氨基酸37种、醛酮类28种和糖类48种。对其中24种有机酸及衍生物的分析发现,20种有机物能够不同程度抑制枸杞幼苗初生根生长。其中水杨酸、邻苯二甲酸、对羟基苯甲酸和香豆素在浓度低至10 μmol/L时仍具显著抑制效应。UPLC结果进一步显示,长期连作导致枸杞园土壤香豆素、水杨酸、苯甲酸、阿魏酸和香豆酸积累。此外,土壤总酚酸含量也随种植年限增加显著增加。这些结果表明土壤中枸杞叶片酚酸能够在长期连作下积累并诱发自毒作用,这为进一步探索枸杞连作障碍形成机制提供了研究基础。
Abstract:
Autotoxicity is one of the main reasons for the formation of continuous cropping barriers, which seriously affects plant growth and food production. The results of previous studies showed that the decrease of soil microbial diversity and the aggravation of soil-borne diseases were the important reasons for the formation of continuous cropping obstacles. But the self-toxic effects and the material basis of residues of Lycium barbarum were still unclear. In order to study the main sources of autotoxins, the effects of leaf, stem and root extracts of Lycium barbarum L. on the growth of Lycium barbarum L. seedlings were studied. The results of concentration gradient test showed that the inhibition effect of leaf extract was higher than that of root, old root bark and stem extract. The growth and photosynthesis of Lycium barbarum L. seedlings were significantly inhibited by adding Lycium barbarum L. leaf powder to the farmland soil without Lycium barbarum L. planting history. It was proved that the leaves of Lycium barbarum L. had self-toxicity. Combined with UPLC-QTOF-MS and GC-TOF-MS for metabolome analysis of Lycium barbarum L. leaves at the end of growing season, a total of 112 organic acids, 41 alcohols, 37 amino acids, 28 aldehydes and ketones and 48 sugars were identified. Analysis of 24 kinds of organic acids and derivatives showed that 20 kinds of organic compounds could inhibit the primary root growth of Lycium barbarum L. seedlings. Salicylic acid, phthalic acid, p-hydroxybenzoic acid, and coumarin still showed significant inhibitory effects at concentrations as low as 10 μmol/L. UPLC results further showed that long-term continuous cropping led to the accumulation of coumarin, salicylic acid, benzoic acid, ferulic acid and coumaric acid. In addition, the content of total phenolic acids in soil increased significantly with the increase of planting years. These results indicated that phenolic acids could accumulate and induce autotoxicity in the leaves of Lycium barbarum L. under long-term continuous cropping, which provided a basis for further research on the mechanism of continuous cropping failure.

参考文献/References:

[1]任珩,王君兰. 我国枸杞产业发展现状及提升路径[J]. 科技促进发展,2019,15(3):310-317.
[2]纳小凡,郑国旗,邢正操,等. 连作对再植枸杞根际细菌群落多样性和群落结构的影响[J]. 土壤学报,2017,54(5):1280-1292.
[3]HUANG L F, SONG L X, XIA X J, et al. Plant-soil feedbacks and soil sickness:from mechanisms to application in agriculture[J]. Journal of Chemical Ecology,2013,39(2):232-242.
[4]ALI A, GHANI M I, DING H, et al. Arbuscular mycorrhizal inoculum coupled with organic substrate induces synergistic effects for soil quality changes, and rhizosphere microbiome structure in long-term monocropped cucumber planted soil[J]. Rhizosphere, 2021, 20:100428.
[5]马少兰,马彩霞,徐鹏鑫,等. 再植枸杞根际真菌群落对长期连作的响应研究[J]. 土壤学报,2019,56(6):1493-1503.
[6]NA X F, MA C X, MA S L, et al. Monocropping decouples plant-bacteria interaction and strengthens phytopathogenic fungi colonization in the rhizosphere of a perennial plant species[J]. Plant and Soil,2019,445(1):549-564.
[7]NA X F, MA S L, MA C X, et al. Lycium barbarum L. (goji berry) monocropping causes microbial diversity loss and induces Fusarium spp. enrichment at distinct soil layers[J]. Applied Soil Ecology,2021,168:104107.
[8]DURN P, THIERGART T, GARRIDO-OTER R, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival[J]. Cell,2018,175(4):973-983.
[9]张俊华,郑国琦. 宁夏枸杞根际土壤线虫群落特征[J]. 应用生态学报,2016,27(5):1647-1656.
[10]MILLER D A. Allelopathy in forage crop systems[J]. Agronomy Journal,1996,88(6):854-859.
[11]赵晓玲,张鑫瑶,何春年,等. 不同来源地骨皮药材中地骨皮甲素和乙素及阿魏酸的含量测定分析[J]. 中国药业,2014,23(12):58-61.
[12] 李敏,闫兴富,马丽,等. 酚酸类化感自毒物质对枸杞种子萌发的抑制作用[J]. 生态学报,2020,40(6):2072-2079.
[13]陈雅林,谭芳,彭勇. 枸杞叶的研究进展[J]. 中国药学杂志,2017,52(5):358-361.
[14]STANIIC' M, C'OSIC' T, SAVIC' J, et al. Hairy root culture as a valuable tool for allelopathic studies in apple[J]. Tree Physiology,2019,39(5):888-905.
[15]AMADO P A, FONSCA-CASTRO A H, SANTOS-ZANUNCIO V S, et al. Assessment of allelopathic, cytotoxic, genotoxic and antigenotoxic potential of Smilax brasiliensis Sprengel leaves[J]. Ecotoxicology and Environmental Safety,2020,192:110310.
[16]YUE M, HU G X, LI J, et al. Allelopathic effects of Castanea henryi aqueous extracts on the growth and physiology of Brassica pekinensis and Zea mays[J]. Chemistry & Biodiversity,2020,17(6):e2000135.
[17]KIND T, WOHLGEMUTH G, LEE D Y, et al. FiehnLib:mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry[J]. Analytical Chemistry,2009,81(24):10038-10048.
[18]IVANISEVIC J, ELIAS D, DEGUCHI H, et al. Arteriovenous blood metabolomics:a readout of intra-tissue metabostasis[J]. Scientific Reports,2015,5(1):1-13.
[19]LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry,2014,78:149-159.
[20]RAJ B, JOHN S, ABDUL R A R. Pharmacognostic and preliminary phytochemical screening of Ampelocissus indica including antioxidant activity[J]. Research Journal of Pharmacognosy and Phytochemistry,2020,12(2):80-82.
[21] 李欣欣,赖金莉,岳建华,等. 毛竹各器官和根际土浸提液对杉木种子萌发的化感作用[J]. 生态学报,2018,38(22):8149-8157.
[22] GHIMIRE B K, GHIMIRE B, YU C Y, et al. Allelopathic and autotoxic effects of Medicago sativa-derived allelochemicals[J]. Plants (Basel),2019,8(7):233.
[23] VOGES M J, BAI Y, SCHULZE-LEFERT P, et al. Plant-derived coumarins shape the composition of an arabidopsis synthetic root microbiome[J]. PNAS,2019,116:12558-12565.
[24] STASSEN M J J, HSU S H, PIETERSE C M J, et al. Coumarin communication along the microbiome-root-shoot axis[J]. Trends in Plant Science,2021,26(2):169-183.
[25]LIU J G, LI X G, JIA Z J, et al. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases[J]. Applied Soil Ecology,2017,110:34-42.
[26]WU H S, WANG Y, BAO W, et al. Responses of Fusarium oxysporum f. sp. niveum to exogenously added sinapic acid in vitro[J]. Biology and Fertility of Soils,2009,45(4):443-447.
[27] 邱立友,戚元成,王明道,等. 植物次生代谢物的自毒作用及其与连作障碍的关系[J]. 土壤,2010,42(1):1-7.
[28]彭彤,马少兰,马彩霞,等. 长期单作对枸杞园不同土层土壤微生物代谢活性和多样性的影响[J/OL]. 草业学报,2023,32(1):89-98.

相似文献/References:

[1]周开胜.厌氧还原土壤灭菌法抑制西瓜专化型尖孢镰刀菌[J].江苏农业学报,2015,(05):1006.[doi:doi:10.3969/j.issn.1000-4440.2015.05.010]
 ZHOU Kai-sheng.Anaerobic soil disinfestation, an effective way to control watermelon fusarium wilt caused by Fusarium oxysporum f. sp. niveum[J].,2015,(02):1006.[doi:doi:10.3969/j.issn.1000-4440.2015.05.010]
[2]赵建华,李浩霞,尹跃,等.枸杞酸性转化酶基因的克隆与表达[J].江苏农业学报,2015,(05):1140.[doi:doi:10.3969/j.issn.1000-4440.2015.05.031]
 ZHAO Jian-hua,LI Hao-xia,YIN Yue,et al.Cloning and expression of acid invertase gene(LbAI) in wolfberry (Lycium barbarum L.)[J].,2015,(02):1140.[doi:doi:10.3969/j.issn.1000-4440.2015.05.031]
[3]刘勇,刘燕,胡茂飞,等.头花蓼水浸提液的化感自毒作用[J].江苏农业学报,2018,(03):520.[doi:doi:10.3969/j.issn.1000-4440.2018.03.006]
 LIU Yong,LIU Yan,HU Mao-fei,et al.Research on allelopathic autotoxicity of water extracts of Polygonum capitatum[J].,2018,(02):520.[doi:doi:10.3969/j.issn.1000-4440.2018.03.006]
[4]徐彬,徐健,祁建杭,等.江苏省设施蔬菜连作障碍土壤理化及生物特征[J].江苏农业学报,2019,(05):1124.[doi:doi:10.3969/j.issn.1000-4440.2019.05.018]
 XU Bin,XU Jian,QI Jian-hang,et al.Soil physical, chemical and biological characteristic analysis of long-term vegetable monoculture in greenhouse in Jiangsu province[J].,2019,(02):1124.[doi:doi:10.3969/j.issn.1000-4440.2019.05.018]
[5]沈婧丽,杨建国.滴灌条件下不同改良模式对碱化土壤性质和枸杞产量的影响[J].江苏农业学报,2020,(02):343.[doi:doi:10.3969/j.issn.1000-4440.2020.02.013]
 SHEN Jing-li,YANG Jian-guo.Effects of different improvement modes on the properties of alkalized soil and the yield of Chinese wolfberry under drip irrigation[J].,2020,(02):343.[doi:doi:10.3969/j.issn.1000-4440.2020.02.013]
[6]孟佳丽,吴绍军,沈虹,等.不同药剂处理对西瓜连作土壤的影响[J].江苏农业学报,2021,(03):651.[doi:doi:10.3969/j.issn.1000-4440.2021.03.013]
 MENG Jia-li,WU Shao-jun,SHEN Hong,et al.Effects of different chemical treatments on continuous cropping soil of watermelon[J].,2021,(02):651.[doi:doi:10.3969/j.issn.1000-4440.2021.03.013]
[7]马澜,邱黛玉,巫蓉,等.栽培模式对党参根际土壤微生物功能多样性的影响[J].江苏农业学报,2023,(05):1132.[doi:doi:10.3969/j.issn.1000-4440.2023.05.005]
 MA Lan,QIU Dai-yu,WU Rong,et al.Effects of cultivation modes on microbial functional diversity in the rhizosphere soil of Codonopsis pilosula[J].,2023,(02):1132.[doi:doi:10.3969/j.issn.1000-4440.2023.05.005]

备注/Memo

备注/Memo:
收稿日期:2022-12-31基金项目:甘肃省自然科学基金项目(22JR5RA461)作者简介:宋燕芳(1998-),女,内蒙古呼和浩特人,硕士研究生,主要从事植物与微生物互作研究。(E-mail)15771555600@163.com通讯作者:纳小凡,(E-mail)naxf@lzu.edu.cn
更新日期/Last Update: 2024-03-17