[1]孙雨桐,刘德帅,冯美,等.果树分子标记辅助育种研究进展[J].江苏农业学报,2024,(01):183-192.[doi:doi:10.3969/j.issn.1000-4440.2024.01.020]
 SUN Yu-tong,LIU De-shuai,FENG Mei,et al.Advances of molecular markers assisted selection applied in fruit tree breeding[J].,2024,(01):183-192.[doi:doi:10.3969/j.issn.1000-4440.2024.01.020]
点击复制

果树分子标记辅助育种研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
183-192
栏目:
综述
出版日期:
2024-01-30

文章信息/Info

Title:
Advances of molecular markers assisted selection applied in fruit tree breeding
作者:
孙雨桐刘德帅冯美齐迅姚文孔
(宁夏大学农学院/宁夏优势特色作物现代分子育种重点实验室/林木资源高效生产全国重点实验室,宁夏银川750021)
Author(s):
SUN Yu-tongLIU De-shuaiFENG MeiQI XunYAO Wen-kong
(School of Agriculture, Ningxia University/Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops/ State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China)
关键词:
果树分子标记遗传图谱QTL定位
Keywords:
fruit treesmolecular markersgenetic mappingQTL localization
分类号:
S603.6
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.020
文献标志码:
A
摘要:
随着分子生物学的不断发展,分子标记在果树育种中发挥的作用也愈发重要。本文主要对不同果树育种的分子标记类型及分子标记在果树种质资源鉴定、抗性育种、无核育种、早熟育种、品质改良育种、分子遗传图谱构建与数量性状座位(QTL)基因定位等方面的应用进行了综述,为果树分子标记辅助育种提供参考。
Abstract:
With the development of molecular biology, molecular markers have played more important roles in the breeding of fruit trees. In this paper, we mainly expounded the types of molecular markers in different fruit trees breeding, and summarized the application of molecular markers in the identification of germplasm resources, resistance breeding, seedless breeding, early maturity breeding, quality improvement breeding, molecular genetic map construction and quantitative trait locus (QTL) mapping in fruit trees. Our study can provide reference for molecular marker assistant breeding in fruit trees.

参考文献/References:

[1]KATULA-DEBRECENI D, LENCSES A K, SZOKE A, et al. Marker-assisted selec-tion for two dominant powdery mildew resistance genes introgressed into ahybrid grape population[J]. Scientia Horiculturae,2010,126(4):448-453.
[2]TARTARINI S. RAPD markers linked to the Vf gene for scab resistance in apple[J]. Theoretical and Applied Genetics,1996,92:803-810.
[3]杨亚州,王跃进,张剑侠,等. 中国葡萄属野生种抗旱基因的分子标记及遗传分析[J]. 园艺学报,2007,34(5):1087-1092.
[4]余智城,何雪娇,林秀香,等. 琯溪蜜柚芽变种质遗传多样性的RAPD分析[J]. 福建热作科技,2022,47(3):38-41.
[5]RAJAPAKSE S, BELTHOFF L E, HE G, et al. Genetic linkage mapping in peach using morphological, RFLP and RAPD markers[J]. Theoretical and Applied Genetics,1995,90(3/4):503-510.
[6]WARBURTON M L, BECERRA-VELáSQUEZ V L, GOFFRED A J C, et al. Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach[J]. Theoretical and Applied Genetics,1996,93(5/6):920-925.
[7]黄晗达,杨静慧,龚无缺,等. 7个樱桃品种亲缘关系的RAPD分析[J]. 天津农学院学报,2018,25(1):5-8.
[8]HIMABINDU A, RAJASEKHAR M. Characterization of traditional mango germplasm of coastal Andhra Pradesh using RAPD markers[J]. Electronic Journal of Plant Breeding,2021,12(4):1261-1267.
[9]董美超,杨帆,李进学,等. 90份鳄梨种质资源AFLP遗传多样性分析[J]. 福建农业学报,2020,35(1):13-19.
[10]LAI C W, LIN Y L, ZHOU X J, et al. AFLP and MSAP analysis of ‘Lane Late’ navel orange and its bud sport pumpkin-like navel orange[J]. Plant Diseases and Pests,2022,13(1):20-25.
[11]王晓英,郭廷松,王新花,等. 4个苹果品种的AFLP分子标记研究[J]. 山东农业大学学报(自然科学版),2018,49(1):90-93.
[12]王平,唐小浪,马培恰,等. 辐射诱变和芽变柑橘品种(系)的AFLP分析[J]. 果树学报,2012,29(1):130-134.
[13]赖春旺,周小娟,米兰芳,等. 脐橙早熟芽变及其早熟性状回复型材料的AFLP和MSAP分析[J]. 果树学报,2022,39(8):1346-1357.
[14]张慧,张世鑫,吴绍华,等. 猕猴桃属33份种质资源的AFLP遗传多样性分析[J]. 生物学杂志,2018,35(2):29-33.
[15]王立新,张小军,史星雲,等. 苹果栽培品种SSR指纹图谱的构建[J]. 果树学报,2012,29(6):971-977.
[16]KIMURA T, SHI Y Z, SHODA M, et al. Identification of asianpear varieties by SSR analysis [J]. Breeding Science,2002,52(2):115-121.
[17]刘国彬,姚砚武,曹均. 利用荧光SSR标记构建欧李种质分子身份证[J]. 东北林业大学学报,2022,50(10):10-17.
[18]魏姗姗,杨敏生,梁海永. 桃品种遗传多样性SSR分析[J]. 耕作与栽培,2022,42(1):1-5,9.
[19]胡光明,张琼,韩飞,等. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学,2022,55(17):3411-3425.
[20]MAHJBI A, OUESLAT I A, BARAKET G, et al. Assessment of genetic diversity of Tunisian orange, Citrus sinensis (L.) osbeck using microsatellite (SSR) markers[J]. Genetics and Molecular Research,2016,15(2):1-12.
[21]王雷存,樊红科,高华,等. 苹果酸度基因(Ma)SSR标记及遗传分析[J]. 园艺学报,2012,39(10):1885-1892.
[22]寿园园. 苹果抗褐斑病性遗传分析与SSR分子标记[D]. 哈尔滨:东北农业大学,2009.
[23]AKKURT M, AKIR A, SHIDFAR M, et al. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection[J]. Genetics and Molecular Research,2012,11(3):2288-2294.
[24]ADAM-BLONDON A F, ROUX C, CLAUX D, et al. Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics [J]. Theoretische and Angewandte Genetik,2004,109(5):1017-2227.
[25]KUCZMOG A, GALAMBOS A, HORVáTH S, et al. Mapping of crown gall resistance locus Rcg1 in grapevine[J]. Theoretische and Angewandte Genetik,2012,125(7):1565-1574.
[26]刘嘉艺,岳俊阳,刘永胜. 基于毛花猕猴桃基因组的性别相关SSR分子标记的开发[J]. 合肥工业大学学报(自然科学版),2022,45(8):1135-1138,1146.
[27]董星光. 梨抗黑星病基因的分子标记研究[D]. 北京:中国农业科学院,2009.
[28]冯涛,刘娟,华夏雪. 利用SSR、SRAP分子标记鉴定桃早熟芽变[J]. 江苏农业科学,2017,45(6):42-44.
[29]孙叶红,张媛,李中勇,等. 苹果砧木耐盐性基因SRAP标记的鉴定及序列分析[J]. 华北农学报,2015,30(2):59-63.
[30]POLAT I, KACAR Y A, YESILOGLU T, et al. Molecular characterization of sour orange (Citrus aurantium) accessions and their relatives using SSR and SRAP markers[J]. Genetics and Molecular Research,2012,11(3):3267-3276.
[31]尚晓星,张安世,刘莹,等. 玫瑰香系葡萄种质资源SRAP遗传多样性分析及指纹图谱构建[J]. 分子植物育种,2020,18(6):1916-1922.
[32]XUAN D T K, NGUYEN Q T, KHANG N H M, et al. Molecular characterization of coconut (Cocos nucifera L.) varieties in Vietnam using sequence-related amplified polymorphism (SRAP) markers[J]. Biologia,2022,77(11):183-191.
[33]祁楠,万怡震,高华,等. 苹果抗斑点落叶病基因的一个RAPD标记的SCAR转换[J]. 西北农业学报,2010,19(6):106-109.
[34]DENG Z N, XIAO S Y, HUANG S L, et al. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata[J]. Genome,1997,40(5):697-704.
[35]赵伟. 葡萄抗白粉病分子标记对胚挽救幼苗辅助筛选研究[D]. 太原:山西农业大学,2019.
[36]贾彦利,王彩虹,田义轲,等. 梨矮化基因pcDw的一个SCAR标记[J]. 园艺学报,2007,34(6):1531-1534.
[37]屈田田,张剑侠,骆强伟,等. 无核葡萄抗寒抗病胚挽救育种应用研究[J]. 果树学报,2017,34(2):157-165.
[38]BALDI P, PATOCCHI A, ZINI E, et al. Cloning and linkage mapping of resistance gene homologues in apple[J]. Theoretical and Applied Genetics,2004,109(1):231-239.
[39]ANTANAVICIUTE L, FERNNDEZ-FERNNDEZ F, JANSEN J, et al. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array[J]. BMC Genomics,2012,13(1):203.
[40]唐海霞,高瑞,王中堂,等. 基于SNP标记的枣高密度遗传连锁图谱重新构建[J]. 园艺学报,2021,48(11):2275-2285.
[41]胡安琪. 基于SNP的桃金娘种质资源遗传多样性研究[D]. 湛江:广东海洋大学,2020.
[42]SMITH H M, SMITH B P, MORALES N B, et al. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation[J]. PLoS One,2017,13(2):1-25.
[43]张晨晨,王佳卉,刘丽琴,等. 龙眼SNP高密度遗传图谱的构建及单果质量QTL定位[J]. 中国南方果树,2022,51(2):89-96.
[44]WU J, LI L T, LI M, et al. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers[J]. Journal of Experimental Botany,2014,65(20):5771-5781.
[45]刘更森. 苹果SSR和SNP标记开发及在遗传图谱构建和品种鉴定中的应用[D]. 长沙:湖南农业大学,2018.
[46]DANG Z G, CHEN Y Y. Construction of a genetic linkage map of mango based on SRAP, AFLP and ISSR markers[J]. Agricultural Biotechnology,2017,6(6):9-16.
[47]张朝红,陈东玫,杨凤秋,等. 苹果SLAF图谱构建及果锈基因QTL分析[J]. 华北农学报,2019,34(5):37-44.
[48]杨南祥. ‘秦冠’和‘蜜脆’遗传图谱的再构建及苹果抗炭疽叶枯病主效基因的定位[D]. 杨凌:西北农林科技大学,2022.
[49]王文魁,曾斌,李疆,等. ‘新世纪梨’ב崇化大梨’F1代分子遗传连锁图谱的构建[J]. 中国农学通报,2014,30(28):116-121.
[50]WANG L, LI X G, WANG L, et al. Construction of a high- density genetic linkagemap in pear (Pyrus communis × Pyrus pyrifolia )sing SSRs and SNPs developed by SLAF- seq[J]. Scientia Horticulturae,2017,21(8):198-204.
[51]ZHANG R P, WU J, LI X G, et al. An AFLP,SRAP,and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.) [J]. Plant Molecular Biology Reports,2013,31(3):678-687.
[52]连晓东. 基于高密度遗传图谱的桃重要性状基因定位及其形成机制研究[D]. 郑州:河南农业大学,2019.
[53]曹珂,王力荣,朱更瑞,等. 桃遗传图谱的构建及两个花性状的分子标记[J]. 园艺学报,2009,36(2):179-186.
[54]王炯. 基于COS Marker构建柑橘连锁图谱及作图群体的光合特性研究[D]. 重庆:西南大学,2017.
[55]CARLOS D O A, BASTIANEL M, CRISTOFANIYALY M, et al. Development of genetic maps of the citrus varieties ‘Murcott’tangor and‘Pera’sweet orange by using fluorescent AFLP markers[J]. Journal of Applied Genetics,2007,48(3):219-231.
[56]OLIVEIRA R P D, CRISTOFANI M, VILDOSO C I A, et al. Genetic linkage maps of ‘Pêra’ sweet orange and ‘Cravo’ mandarin with RAPD markers[J]. Pesquisa Agropecuária Brasileira,2004,39:159-165.
[57]邢卉阳. 基于高密度遗传图谱构建的葡萄抗寒性QTL定位及候选基因筛选研究[D]. 沈阳:沈阳农业大学,2019.
[58]仇倩倩. ‘JMS2’ב邢16’杂交后代高密度遗传图谱构建及果实大小相关性状的QTL定位[D]. 阿拉尔:塔里木大学,2021.
[59]王中堂. 枣高密度遗传连锁图谱构建与农艺性状QTL定位[D]. 杨凌:西北农林科技大学,2020.
[60]赵玉辉,郭印山,胡又厘,等. 应用RAPD、SRAP及AFLP标记构建荔枝高密度复合遗传图谱[J]. 园艺学报,2010,37(5):697-704.
[61]郭印山,赵玉辉,刘朝吉,等. 利用多种分子标记构建龙眼高密度分子遗传图谱[J]. 园艺学报,2009,36(5):655-662.
[62]FOSTER T M, CELTON J M, CHAGNé D, et al. Two quantitative trait loci Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple[J].Horticulture Research,2015,2(15001):1-9.
[63]ZHENG W, SHEN F, WANG W Q, et al. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color[J]. The Plant Genome,2020,13(3):1-18.
[64]孙瑞. 苹果高密度遗传连锁图谱构建与重要果实品质性状QTL定位[D]. 北京:中国农业大学,2015.
[65]赵亚楠. 梨高密度遗传连锁图谱构建及果实品质性状的基因定位[D]. 北京:中国农业科学院,2019.
[66]SUN M Y, ZHANG M Y, SINGH J, et al. Contrasting genetic variation and positive selection followed the divergence of NBS-encoding genes in Asian and European pears[J]. BMC Genomics,2020,21(1):809-821.
[67]崔镁沙,庄艳,申飞,等. 苹果果实轮纹病抗病性QTL定位及相关基因的初步预测[J]. 果树学报,2014,31(5):793-800.
[68]LIU J, SHEN F, XIAO Y M, et al. Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks[J]. BMC Genomics,2020,21(1):550-559.
[69]WU B, SHEN F, WANG X, et al. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction[J]. Plant Biotechnol,2021,19(5):1022-1037.
[70]YU Y, BAI J H, CHEN C X, et al. Identification of QTLs controlling aroma volatiles using a ‘Fortune’בMurcott’ (Citrus reticulata) population[J]. BMC Genomics,2017,18(1):646-662.
[71]王海波. 干旱条件下苹果水分利用效率相关性状的QTL定位和候选基因的筛选与鉴定[D]. 杨凌:西北农林科技大学,2018.
[72]罗艾,龚桂芝,彭祝春,等. 柑橘果实大小与质量的遗传分析和数量性状位点定位[J]. 浙江大学学报(农业与生命科学版),2021,47(6):719-728.
[73]马喜军. 柑橘遗传图谱的延伸加密以及抗寒性遗传分析和QTL定位[D]. 重庆:西南大学,2012.
[74]HUANG M, ROOSE M L, YU Q, et al.Construction of high-density genetic maps and detection of QTLs associated with Huanglongbing tolerance in citrus[J]. Frontiers in Plant Science,2018,9:1694-1735.
[75]WU J, LI L T, LI M, et al. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers[J]. Journal of Experimental Botany,2014,65(20):5771-5781.
[76]汤雨晴. 柑橘果肉色泽的遗传研究及类胡萝卜素含量的QTL定位[D]. 武汉:华中农业大学,2018.
[77]YU Y, BAI J H, CHEN C X, et al. Identification of QTLs controlling aroma volatiles using a ‘Fortune’בMurcott’(Citrus reticulata) population[J]. BMC Genomics,2017,18(1):646-662.
[78]RAGA V, INTRIGLIOLO D S, BERNET G P, et al. Genetic analysis of salt tolerance in a progeny derived from the citrus rootstocks cleopatra mandarin and trifoliate orange[J]. Tree Genetics,2016,12(3):34-50.
[79]CIRILLI M, GATTOLIN S, CHIOZZOTTO R, et al. The Di2/pet variant in PETALOSA gene underlies a major heat requirement-related QTL for blooming date in peach (P. persica L. Batsch)[J]. Plant and Cell Physiology,2021,62(2):356-365.
[80]鲍荆凯. ‘JMS2’ב交城5号’枣杂交后代高密度遗传图谱构建及果实大小、糖酸性状的QTL定位[D]. 阿拉尔:塔里木大学,2022.
[81]刘春燕. 猕猴桃种间高密度遗传图谱的构建及果实性状QTLs定位[D]. 武汉:中国科学院研究生院(武汉植物园),2016.
[82]史晓畅. 山楂高密度分子遗传图谱的构建及部分果实性状的QTL定位分析[D]. 沈阳:沈阳农业大学,2019.
[83]王志伟. 分子标记辅助选择构建棉花种间单片段代换系及其遗传评价[D]. 武汉:华中农业大学,2009.
[84]MADHUMATI B. Potential and application of molecular markers techniques for plant genome analysis[J]. International Journal of Pure Applied Bioscience,2014,2(1):169-188.
[85]WOLFF K, SCHOEN E D, PETERS-VAN R J. Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum[J]. Theoretical and Applied Genetics,1993,86(8):1033-1037.
[86]LYNCH M, WALSH B. Genetics and analysis of quantitative traits[J]. American Journal of Human Biology,1999,11(6):548-549.
[87]周燃,甘泉,林翠香,等. 安徽地区主栽粳(糯)稻品种遗传多样性分析及DNA指纹图谱构建[J]. 生物学杂志,2023,40(1):46-51.
[88]刘欣,程瑞,徐兵划,等. 基于KASP技术的SNP标记用于西瓜品种指纹图谱构建和种子纯度检测[J]. 江苏农业学报,2022,38(5):1348-1356.
[89]胡小文,孔冉,刘洋,等. 利用转录组测序开发甘蔗SNP分子标记[J]. 南方农业学报,2022,53(9):2527-2536.
[90]教忠意,田雪瑶,郑纪伟,等. 灌木柳耐盐SNP位点的快速鉴定与标记开发[J]. 南京林业大学学报(自然科学版),2023,47(5):107-113.
[91]王泽涵,于文涛,樊晓静,等. 利用SNP标记构建漳州南部茶树种质资源的分子身份证[J]. 江苏农业科学,2022,50(18):284-289.
[92]MUHAMMAD A N, MUHAMMAD A N, MUHAMMAD Q S, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing[J]. Biotechnology & Biotechnological Equipment,2018,32(2):261-285.
[93]邢卉阳. 基于高密度遗传图谱构建的葡萄抗寒性QTL定位及候选基因筛选研究[D]. 沈阳:沈阳农业大学,2019.
[94]OGUNDIWIN E A, PEACE C P, GRADZIEL T M, et al. A fruit quality gene map of Prunus[J]. BMC Genomics,2009,8(10):587-600.

相似文献/References:

[1]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
 WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(01):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[2]魏兰君,周建涛,颜志梅,等.果树在休闲农业中的功能[J].江苏农业学报,2018,(03):657.[doi:doi:10.3969/j.issn.1000-4440.2018.03.026]
 WEI Lan-jun,ZHOU Jian-tao,YAN Zhi-mei,et al.Function of fruit trees in leisure agriculture[J].,2018,(01):657.[doi:doi:10.3969/j.issn.1000-4440.2018.03.026]
[3]张善磊,孙旭超,陈涛,等.Pi-ta、Pi-5、Pi-km和Pi-b基因在粳稻品种(系)中的分布及对穗颈瘟的抗性[J].江苏农业学报,2018,(05):961.[doi:doi:10.3969/j.issn.1000-4440.2018.05.001]
 ZHANG Shan-lei,SUN Xu-chao,CHEN Tao,et al.Distribution of Pi-ta,Pi-5,Pi-km and Pi-b genes in japonica rice varieties (lines) and their relationship with neck blast resistance[J].,2018,(01):961.[doi:doi:10.3969/j.issn.1000-4440.2018.05.001]
[4]徐剑文,孔杰,赵君,等.盐胁迫下棉花萌发、成苗和产量相关性状的QTL定位[J].江苏农业学报,2018,(05):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
 XU Jian-wen,KONG-Jie,ZHAO Jun,et al.Identification of QTLs conferring the traits related to germination, seedling survival and production of cotton under salt stress[J].,2018,(01):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
[5]赵君,张大伟,徐剑文,等.陆地棉VR018抗黄萎病QTL定位[J].江苏农业学报,2018,(06):1232.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]
 ZHAO Jun,ZHANG Da-wei,XU Jian-wen,et al.Quantitative trait locus mapping for Verticillium wilt resistance in upland cotton VR018[J].,2018,(01):1232.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]
[6]田孟祥,张时龙,何友勋,等.水稻耐低温基因bZIP73分子标记的开发与验证[J].江苏农业学报,2019,(06):1265.[doi:doi:10.3969/j.issn.1000-4440.2019.06.001]
 TIAN Meng-xiang,ZHANG Shi-long,HE You-xun,et al.Development and verification of molecular markers of chilling tolerance gene bZIP73 in rice[J].,2019,(01):1265.[doi:doi:10.3969/j.issn.1000-4440.2019.06.001]
[7]马杰,屈雯,陈春艳,等.基于转录组序列的羊肚菌EST-SSR标记开发与遗传多样性分析[J].江苏农业学报,2020,(05):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
 MA Jie,QU Wen,CHEN Chun-yan,et al.Development of EST-SSR markers based on transcriptome sequencing of Morchella spp. and its genetic diversity analysis[J].,2020,(01):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
[8]李刚,唐玲,颜志明,等.果树在园艺疗法中的应用[J].江苏农业学报,2021,(01):267.[doi:doi:10.3969/j.issn.1000-4440.2021.01.034]
 LI Gang,TANG Ling,YAN Zhi-ming,et al.Application of fruit trees in horticultural therapy[J].,2021,(01):267.[doi:doi:10.3969/j.issn.1000-4440.2021.01.034]
[9]于江辉,李焱瑶,秦冠男,等.水稻OsNRAMP5基因低镉积累突变位点功能标记的开发与验证[J].江苏农业学报,2022,38(02):289.[doi:doi:10.3969/j.issn.1000-4440.2022.02.001]
 YU Jiang-hui,LI Yan-yao,QIN Guan-nan,et al.Development and validation of functional markers of low-cadmium accumulation mutation sites in rice OsNRAMP5 gene[J].,2022,38(01):289.[doi:doi:10.3969/j.issn.1000-4440.2022.02.001]
[10]郭瑞,姚维成,陈琛,等.镇麦品种相关品质性状基因的分子标记检测分析[J].江苏农业学报,2023,(01):1.[doi:doi:10.3969/j.issn.1000-4440.2023.01.001]
 GUO Rui,YAO Wei-cheng,CHEN Chen,et al.Analysis of molecular markers detection for genes related to quality traits in Zhenmai wheat cultivars[J].,2023,(01):1.[doi:doi:10.3969/j.issn.1000-4440.2023.01.001]
[11]王燕,田泰,马艳,等.中国果树新品种保护与DUS测试研究进展[J].江苏农业学报,2022,38(03):849.[doi:doi:10.3969/j.issn.1000-4440.2022.03.033]
 WANG Yan,TIAN Tai,MA Yan,et al.Research progress of plant variety protection and test for distinctness, uniformity and stability of fruit trees in China[J].,2022,38(01):849.[doi:doi:10.3969/j.issn.1000-4440.2022.03.033]

备注/Memo

备注/Memo:
收稿日期:2023-02-25基金项目:宁夏回族自治区农业育种项目(NXNYYZ202101);宁夏回族自治区重点研发项目(2018BEB04004)作者简介:孙雨桐(1998-),女,黑龙江五常人,硕士研究生,研究方向为果树学。(E-mail)syt15146063010@163.com通讯作者:姚文孔, (E-mail)yaowenkong@163.com
更新日期/Last Update: 2024-03-17