参考文献/References:
[1]KATULA-DEBRECENI D, LENCSES A K, SZOKE A, et al. Marker-assisted selec-tion for two dominant powdery mildew resistance genes introgressed into ahybrid grape population[J]. Scientia Horiculturae,2010,126(4):448-453.
[2]TARTARINI S. RAPD markers linked to the Vf gene for scab resistance in apple[J]. Theoretical and Applied Genetics,1996,92:803-810.
[3]杨亚州,王跃进,张剑侠,等. 中国葡萄属野生种抗旱基因的分子标记及遗传分析[J]. 园艺学报,2007,34(5):1087-1092.
[4]余智城,何雪娇,林秀香,等. 琯溪蜜柚芽变种质遗传多样性的RAPD分析[J]. 福建热作科技,2022,47(3):38-41.
[5]RAJAPAKSE S, BELTHOFF L E, HE G, et al. Genetic linkage mapping in peach using morphological, RFLP and RAPD markers[J]. Theoretical and Applied Genetics,1995,90(3/4):503-510.
[6]WARBURTON M L, BECERRA-VELáSQUEZ V L, GOFFRED A J C, et al. Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach[J]. Theoretical and Applied Genetics,1996,93(5/6):920-925.
[7]黄晗达,杨静慧,龚无缺,等. 7个樱桃品种亲缘关系的RAPD分析[J]. 天津农学院学报,2018,25(1):5-8.
[8]HIMABINDU A, RAJASEKHAR M. Characterization of traditional mango germplasm of coastal Andhra Pradesh using RAPD markers[J]. Electronic Journal of Plant Breeding,2021,12(4):1261-1267.
[9]董美超,杨帆,李进学,等. 90份鳄梨种质资源AFLP遗传多样性分析[J]. 福建农业学报,2020,35(1):13-19.
[10]LAI C W, LIN Y L, ZHOU X J, et al. AFLP and MSAP analysis of ‘Lane Late’ navel orange and its bud sport pumpkin-like navel orange[J]. Plant Diseases and Pests,2022,13(1):20-25.
[11]王晓英,郭廷松,王新花,等. 4个苹果品种的AFLP分子标记研究[J]. 山东农业大学学报(自然科学版),2018,49(1):90-93.
[12]王平,唐小浪,马培恰,等. 辐射诱变和芽变柑橘品种(系)的AFLP分析[J]. 果树学报,2012,29(1):130-134.
[13]赖春旺,周小娟,米兰芳,等. 脐橙早熟芽变及其早熟性状回复型材料的AFLP和MSAP分析[J]. 果树学报,2022,39(8):1346-1357.
[14]张慧,张世鑫,吴绍华,等. 猕猴桃属33份种质资源的AFLP遗传多样性分析[J]. 生物学杂志,2018,35(2):29-33.
[15]王立新,张小军,史星雲,等. 苹果栽培品种SSR指纹图谱的构建[J]. 果树学报,2012,29(6):971-977.
[16]KIMURA T, SHI Y Z, SHODA M, et al. Identification of asianpear varieties by SSR analysis [J]. Breeding Science,2002,52(2):115-121.
[17]刘国彬,姚砚武,曹均. 利用荧光SSR标记构建欧李种质分子身份证[J]. 东北林业大学学报,2022,50(10):10-17.
[18]魏姗姗,杨敏生,梁海永. 桃品种遗传多样性SSR分析[J]. 耕作与栽培,2022,42(1):1-5,9.
[19]胡光明,张琼,韩飞,等. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学,2022,55(17):3411-3425.
[20]MAHJBI A, OUESLAT I A, BARAKET G, et al. Assessment of genetic diversity of Tunisian orange, Citrus sinensis (L.) osbeck using microsatellite (SSR) markers[J]. Genetics and Molecular Research,2016,15(2):1-12.
[21]王雷存,樊红科,高华,等. 苹果酸度基因(Ma)SSR标记及遗传分析[J]. 园艺学报,2012,39(10):1885-1892.
[22]寿园园. 苹果抗褐斑病性遗传分析与SSR分子标记[D]. 哈尔滨:东北农业大学,2009.
[23]AKKURT M, AKIR A, SHIDFAR M, et al. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection[J]. Genetics and Molecular Research,2012,11(3):2288-2294.
[24]ADAM-BLONDON A F, ROUX C, CLAUX D, et al. Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics [J]. Theoretische and Angewandte Genetik,2004,109(5):1017-2227.
[25]KUCZMOG A, GALAMBOS A, HORVáTH S, et al. Mapping of crown gall resistance locus Rcg1 in grapevine[J]. Theoretische and Angewandte Genetik,2012,125(7):1565-1574.
[26]刘嘉艺,岳俊阳,刘永胜. 基于毛花猕猴桃基因组的性别相关SSR分子标记的开发[J]. 合肥工业大学学报(自然科学版),2022,45(8):1135-1138,1146.
[27]董星光. 梨抗黑星病基因的分子标记研究[D]. 北京:中国农业科学院,2009.
[28]冯涛,刘娟,华夏雪. 利用SSR、SRAP分子标记鉴定桃早熟芽变[J]. 江苏农业科学,2017,45(6):42-44.
[29]孙叶红,张媛,李中勇,等. 苹果砧木耐盐性基因SRAP标记的鉴定及序列分析[J]. 华北农学报,2015,30(2):59-63.
[30]POLAT I, KACAR Y A, YESILOGLU T, et al. Molecular characterization of sour orange (Citrus aurantium) accessions and their relatives using SSR and SRAP markers[J]. Genetics and Molecular Research,2012,11(3):3267-3276.
[31]尚晓星,张安世,刘莹,等. 玫瑰香系葡萄种质资源SRAP遗传多样性分析及指纹图谱构建[J]. 分子植物育种,2020,18(6):1916-1922.
[32]XUAN D T K, NGUYEN Q T, KHANG N H M, et al. Molecular characterization of coconut (Cocos nucifera L.) varieties in Vietnam using sequence-related amplified polymorphism (SRAP) markers[J]. Biologia,2022,77(11):183-191.
[33]祁楠,万怡震,高华,等. 苹果抗斑点落叶病基因的一个RAPD标记的SCAR转换[J]. 西北农业学报,2010,19(6):106-109.
[34]DENG Z N, XIAO S Y, HUANG S L, et al. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata[J]. Genome,1997,40(5):697-704.
[35]赵伟. 葡萄抗白粉病分子标记对胚挽救幼苗辅助筛选研究[D]. 太原:山西农业大学,2019.
[36]贾彦利,王彩虹,田义轲,等. 梨矮化基因pcDw的一个SCAR标记[J]. 园艺学报,2007,34(6):1531-1534.
[37]屈田田,张剑侠,骆强伟,等. 无核葡萄抗寒抗病胚挽救育种应用研究[J]. 果树学报,2017,34(2):157-165.
[38]BALDI P, PATOCCHI A, ZINI E, et al. Cloning and linkage mapping of resistance gene homologues in apple[J]. Theoretical and Applied Genetics,2004,109(1):231-239.
[39]ANTANAVICIUTE L, FERNNDEZ-FERNNDEZ F, JANSEN J, et al. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array[J]. BMC Genomics,2012,13(1):203.
[40]唐海霞,高瑞,王中堂,等. 基于SNP标记的枣高密度遗传连锁图谱重新构建[J]. 园艺学报,2021,48(11):2275-2285.
[41]胡安琪. 基于SNP的桃金娘种质资源遗传多样性研究[D]. 湛江:广东海洋大学,2020.
[42]SMITH H M, SMITH B P, MORALES N B, et al. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation[J]. PLoS One,2017,13(2):1-25.
[43]张晨晨,王佳卉,刘丽琴,等. 龙眼SNP高密度遗传图谱的构建及单果质量QTL定位[J]. 中国南方果树,2022,51(2):89-96.
[44]WU J, LI L T, LI M, et al. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers[J]. Journal of Experimental Botany,2014,65(20):5771-5781.
[45]刘更森. 苹果SSR和SNP标记开发及在遗传图谱构建和品种鉴定中的应用[D]. 长沙:湖南农业大学,2018.
[46]DANG Z G, CHEN Y Y. Construction of a genetic linkage map of mango based on SRAP, AFLP and ISSR markers[J]. Agricultural Biotechnology,2017,6(6):9-16.
[47]张朝红,陈东玫,杨凤秋,等. 苹果SLAF图谱构建及果锈基因QTL分析[J]. 华北农学报,2019,34(5):37-44.
[48]杨南祥. ‘秦冠’和‘蜜脆’遗传图谱的再构建及苹果抗炭疽叶枯病主效基因的定位[D]. 杨凌:西北农林科技大学,2022.
[49]王文魁,曾斌,李疆,等. ‘新世纪梨’ב崇化大梨’F1代分子遗传连锁图谱的构建[J]. 中国农学通报,2014,30(28):116-121.
[50]WANG L, LI X G, WANG L, et al. Construction of a high- density genetic linkagemap in pear (Pyrus communis × Pyrus pyrifolia )sing SSRs and SNPs developed by SLAF- seq[J]. Scientia Horticulturae,2017,21(8):198-204.
[51]ZHANG R P, WU J, LI X G, et al. An AFLP,SRAP,and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.) [J]. Plant Molecular Biology Reports,2013,31(3):678-687.
[52]连晓东. 基于高密度遗传图谱的桃重要性状基因定位及其形成机制研究[D]. 郑州:河南农业大学,2019.
[53]曹珂,王力荣,朱更瑞,等. 桃遗传图谱的构建及两个花性状的分子标记[J]. 园艺学报,2009,36(2):179-186.
[54]王炯. 基于COS Marker构建柑橘连锁图谱及作图群体的光合特性研究[D]. 重庆:西南大学,2017.
[55]CARLOS D O A, BASTIANEL M, CRISTOFANIYALY M, et al. Development of genetic maps of the citrus varieties ‘Murcott’tangor and‘Pera’sweet orange by using fluorescent AFLP markers[J]. Journal of Applied Genetics,2007,48(3):219-231.
[56]OLIVEIRA R P D, CRISTOFANI M, VILDOSO C I A, et al. Genetic linkage maps of ‘Pêra’ sweet orange and ‘Cravo’ mandarin with RAPD markers[J]. Pesquisa Agropecuária Brasileira,2004,39:159-165.
[57]邢卉阳. 基于高密度遗传图谱构建的葡萄抗寒性QTL定位及候选基因筛选研究[D]. 沈阳:沈阳农业大学,2019.
[58]仇倩倩. ‘JMS2’ב邢16’杂交后代高密度遗传图谱构建及果实大小相关性状的QTL定位[D]. 阿拉尔:塔里木大学,2021.
[59]王中堂. 枣高密度遗传连锁图谱构建与农艺性状QTL定位[D]. 杨凌:西北农林科技大学,2020.
[60]赵玉辉,郭印山,胡又厘,等. 应用RAPD、SRAP及AFLP标记构建荔枝高密度复合遗传图谱[J]. 园艺学报,2010,37(5):697-704.
[61]郭印山,赵玉辉,刘朝吉,等. 利用多种分子标记构建龙眼高密度分子遗传图谱[J]. 园艺学报,2009,36(5):655-662.
[62]FOSTER T M, CELTON J M, CHAGNé D, et al. Two quantitative trait loci Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple[J].Horticulture Research,2015,2(15001):1-9.
[63]ZHENG W, SHEN F, WANG W Q, et al. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color[J]. The Plant Genome,2020,13(3):1-18.
[64]孙瑞. 苹果高密度遗传连锁图谱构建与重要果实品质性状QTL定位[D]. 北京:中国农业大学,2015.
[65]赵亚楠. 梨高密度遗传连锁图谱构建及果实品质性状的基因定位[D]. 北京:中国农业科学院,2019.
[66]SUN M Y, ZHANG M Y, SINGH J, et al. Contrasting genetic variation and positive selection followed the divergence of NBS-encoding genes in Asian and European pears[J]. BMC Genomics,2020,21(1):809-821.
[67]崔镁沙,庄艳,申飞,等. 苹果果实轮纹病抗病性QTL定位及相关基因的初步预测[J]. 果树学报,2014,31(5):793-800.
[68]LIU J, SHEN F, XIAO Y M, et al. Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks[J]. BMC Genomics,2020,21(1):550-559.
[69]WU B, SHEN F, WANG X, et al. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction[J]. Plant Biotechnol,2021,19(5):1022-1037.
[70]YU Y, BAI J H, CHEN C X, et al. Identification of QTLs controlling aroma volatiles using a ‘Fortune’בMurcott’ (Citrus reticulata) population[J]. BMC Genomics,2017,18(1):646-662.
[71]王海波. 干旱条件下苹果水分利用效率相关性状的QTL定位和候选基因的筛选与鉴定[D]. 杨凌:西北农林科技大学,2018.
[72]罗艾,龚桂芝,彭祝春,等. 柑橘果实大小与质量的遗传分析和数量性状位点定位[J]. 浙江大学学报(农业与生命科学版),2021,47(6):719-728.
[73]马喜军. 柑橘遗传图谱的延伸加密以及抗寒性遗传分析和QTL定位[D]. 重庆:西南大学,2012.
[74]HUANG M, ROOSE M L, YU Q, et al.Construction of high-density genetic maps and detection of QTLs associated with Huanglongbing tolerance in citrus[J]. Frontiers in Plant Science,2018,9:1694-1735.
[75]WU J, LI L T, LI M, et al. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers[J]. Journal of Experimental Botany,2014,65(20):5771-5781.
[76]汤雨晴. 柑橘果肉色泽的遗传研究及类胡萝卜素含量的QTL定位[D]. 武汉:华中农业大学,2018.
[77]YU Y, BAI J H, CHEN C X, et al. Identification of QTLs controlling aroma volatiles using a ‘Fortune’בMurcott’(Citrus reticulata) population[J]. BMC Genomics,2017,18(1):646-662.
[78]RAGA V, INTRIGLIOLO D S, BERNET G P, et al. Genetic analysis of salt tolerance in a progeny derived from the citrus rootstocks cleopatra mandarin and trifoliate orange[J]. Tree Genetics,2016,12(3):34-50.
[79]CIRILLI M, GATTOLIN S, CHIOZZOTTO R, et al. The Di2/pet variant in PETALOSA gene underlies a major heat requirement-related QTL for blooming date in peach (P. persica L. Batsch)[J]. Plant and Cell Physiology,2021,62(2):356-365.
[80]鲍荆凯. ‘JMS2’ב交城5号’枣杂交后代高密度遗传图谱构建及果实大小、糖酸性状的QTL定位[D]. 阿拉尔:塔里木大学,2022.
[81]刘春燕. 猕猴桃种间高密度遗传图谱的构建及果实性状QTLs定位[D]. 武汉:中国科学院研究生院(武汉植物园),2016.
[82]史晓畅. 山楂高密度分子遗传图谱的构建及部分果实性状的QTL定位分析[D]. 沈阳:沈阳农业大学,2019.
[83]王志伟. 分子标记辅助选择构建棉花种间单片段代换系及其遗传评价[D]. 武汉:华中农业大学,2009.
[84]MADHUMATI B. Potential and application of molecular markers techniques for plant genome analysis[J]. International Journal of Pure Applied Bioscience,2014,2(1):169-188.
[85]WOLFF K, SCHOEN E D, PETERS-VAN R J. Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum[J]. Theoretical and Applied Genetics,1993,86(8):1033-1037.
[86]LYNCH M, WALSH B. Genetics and analysis of quantitative traits[J]. American Journal of Human Biology,1999,11(6):548-549.
[87]周燃,甘泉,林翠香,等. 安徽地区主栽粳(糯)稻品种遗传多样性分析及DNA指纹图谱构建[J]. 生物学杂志,2023,40(1):46-51.
[88]刘欣,程瑞,徐兵划,等. 基于KASP技术的SNP标记用于西瓜品种指纹图谱构建和种子纯度检测[J]. 江苏农业学报,2022,38(5):1348-1356.
[89]胡小文,孔冉,刘洋,等. 利用转录组测序开发甘蔗SNP分子标记[J]. 南方农业学报,2022,53(9):2527-2536.
[90]教忠意,田雪瑶,郑纪伟,等. 灌木柳耐盐SNP位点的快速鉴定与标记开发[J]. 南京林业大学学报(自然科学版),2023,47(5):107-113.
[91]王泽涵,于文涛,樊晓静,等. 利用SNP标记构建漳州南部茶树种质资源的分子身份证[J]. 江苏农业科学,2022,50(18):284-289.
[92]MUHAMMAD A N, MUHAMMAD A N, MUHAMMAD Q S, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing[J]. Biotechnology & Biotechnological Equipment,2018,32(2):261-285.
[93]邢卉阳. 基于高密度遗传图谱构建的葡萄抗寒性QTL定位及候选基因筛选研究[D]. 沈阳:沈阳农业大学,2019.
[94]OGUNDIWIN E A, PEACE C P, GRADZIEL T M, et al. A fruit quality gene map of Prunus[J]. BMC Genomics,2009,8(10):587-600.
相似文献/References:
[1]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(01):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[2]魏兰君,周建涛,颜志梅,等.果树在休闲农业中的功能[J].江苏农业学报,2018,(03):657.[doi:doi:10.3969/j.issn.1000-4440.2018.03.026]
WEI Lan-jun,ZHOU Jian-tao,YAN Zhi-mei,et al.Function of fruit trees in leisure agriculture[J].,2018,(01):657.[doi:doi:10.3969/j.issn.1000-4440.2018.03.026]
[3]张善磊,孙旭超,陈涛,等.Pi-ta、Pi-5、Pi-km和Pi-b基因在粳稻品种(系)中的分布及对穗颈瘟的抗性[J].江苏农业学报,2018,(05):961.[doi:doi:10.3969/j.issn.1000-4440.2018.05.001]
ZHANG Shan-lei,SUN Xu-chao,CHEN Tao,et al.Distribution of Pi-ta,Pi-5,Pi-km and Pi-b genes in japonica rice varieties (lines) and their relationship with neck blast resistance[J].,2018,(01):961.[doi:doi:10.3969/j.issn.1000-4440.2018.05.001]
[4]徐剑文,孔杰,赵君,等.盐胁迫下棉花萌发、成苗和产量相关性状的QTL定位[J].江苏农业学报,2018,(05):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
XU Jian-wen,KONG-Jie,ZHAO Jun,et al.Identification of QTLs conferring the traits related to germination, seedling survival and production of cotton under salt stress[J].,2018,(01):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
[5]赵君,张大伟,徐剑文,等.陆地棉VR018抗黄萎病QTL定位[J].江苏农业学报,2018,(06):1232.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]
ZHAO Jun,ZHANG Da-wei,XU Jian-wen,et al.Quantitative trait locus mapping for Verticillium wilt resistance in upland cotton VR018[J].,2018,(01):1232.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]
[6]田孟祥,张时龙,何友勋,等.水稻耐低温基因bZIP73分子标记的开发与验证[J].江苏农业学报,2019,(06):1265.[doi:doi:10.3969/j.issn.1000-4440.2019.06.001]
TIAN Meng-xiang,ZHANG Shi-long,HE You-xun,et al.Development and verification of molecular markers of chilling tolerance gene bZIP73 in rice[J].,2019,(01):1265.[doi:doi:10.3969/j.issn.1000-4440.2019.06.001]
[7]马杰,屈雯,陈春艳,等.基于转录组序列的羊肚菌EST-SSR标记开发与遗传多样性分析[J].江苏农业学报,2020,(05):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
MA Jie,QU Wen,CHEN Chun-yan,et al.Development of EST-SSR markers based on transcriptome sequencing of Morchella spp. and its genetic diversity analysis[J].,2020,(01):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
[8]李刚,唐玲,颜志明,等.果树在园艺疗法中的应用[J].江苏农业学报,2021,(01):267.[doi:doi:10.3969/j.issn.1000-4440.2021.01.034]
LI Gang,TANG Ling,YAN Zhi-ming,et al.Application of fruit trees in horticultural therapy[J].,2021,(01):267.[doi:doi:10.3969/j.issn.1000-4440.2021.01.034]
[9]于江辉,李焱瑶,秦冠男,等.水稻OsNRAMP5基因低镉积累突变位点功能标记的开发与验证[J].江苏农业学报,2022,38(02):289.[doi:doi:10.3969/j.issn.1000-4440.2022.02.001]
YU Jiang-hui,LI Yan-yao,QIN Guan-nan,et al.Development and validation of functional markers of low-cadmium accumulation mutation sites in rice OsNRAMP5 gene[J].,2022,38(01):289.[doi:doi:10.3969/j.issn.1000-4440.2022.02.001]
[10]郭瑞,姚维成,陈琛,等.镇麦品种相关品质性状基因的分子标记检测分析[J].江苏农业学报,2023,(01):1.[doi:doi:10.3969/j.issn.1000-4440.2023.01.001]
GUO Rui,YAO Wei-cheng,CHEN Chen,et al.Analysis of molecular markers detection for genes related to quality traits in Zhenmai wheat cultivars[J].,2023,(01):1.[doi:doi:10.3969/j.issn.1000-4440.2023.01.001]
[11]王燕,田泰,马艳,等.中国果树新品种保护与DUS测试研究进展[J].江苏农业学报,2022,38(03):849.[doi:doi:10.3969/j.issn.1000-4440.2022.03.033]
WANG Yan,TIAN Tai,MA Yan,et al.Research progress of plant variety protection and test for distinctness, uniformity and stability of fruit trees in China[J].,2022,38(01):849.[doi:doi:10.3969/j.issn.1000-4440.2022.03.033]