参考文献/References:
[1]CHEN Y Y, FAN P S, MO Z W, et al. Deep placement of nitrogen fertilizer affects grain yield, nitrogen recovery efficiency, and root characteristics in direct-seeded rice in South China[J]. Journal of Plant Growth Regulation,2021,40(1):379-387.
[2]赵秉强. 增值肥料概论[M]. 北京:中国农业科学技术出版社,2020.
[3]张健,李燕婷,袁亮,等. 氨基酸发酵尾液可促进樱桃番茄对水溶肥料氮素的吸收利用[J]. 植物营养与肥料学报,2018,24(1):114-121.
[4]SOURI M K, HATAMIAN M. Aminochelates in plant nutrition: a review[J]. Journal of Plant Nutrition,2019,42(1):67-78.
[5]程林,章力干,张国漪,等. 氨基酸增值尿素对水稻苗期生长及根际微生物菌群的影响[J]. 植物营养与肥料学报,2021,27(1):35-44.
[6]DESSAUX Y, GRANDCLMENT C, FAURE D. Engineering the rhizosphere[J]. Trends in Plant Science,2016,21(3):266-278.
[7]JIN J, WANG M, LU W, et al. Effect of plants and their root exudate on bacterial activities during rhizobacterium-plant remediation of phenol from water[J]. Environment International,2019,127:114-124.
[8]王俊鹏,李飞,唐玉海,等. 氨基酸肥料对设施砂培番茄生长的影响[J]. 磷肥与复肥,2022,37(9):46-49.
[9]梁道满. 氨基酸水溶肥料在玉米上应用效果[J]. 现代化农业,2022(6):14-16.
[10]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
[11]许猛,袁亮,李伟,等. 复合氨基酸肥料增效剂对NaCl胁迫下小白菜种子萌发和苗期生长的影响[J]. 植物营养与肥料学报,2018,24(4):992-1000.
[12]LIU Q, MENG X, LI T, et al. The growth promotion of peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-based biological organic fertilizer: possible role of increasing nutrient availabilities[J]. Microorganisms,2020,8(9):1296.
[13]CARLOS F S, KUNDE R J, DE SOUSA R O, et al. Urease inhibitor reduces ammonia volatilization and increases rice grain yield under irrigation delay[J]. Nutrient Cycling in Agroecosystems,2022,122(3):313-324.
[14]朱荣,柳丽丽,齐永波,等. 稻田氨挥发和水稻产量对增效复合肥减氮施用的响应[J]. 农业环境科学学报,2021,40(9):1935-1943.
[15]巨晓棠,刘学军,张福锁. 尿素配施有机物料时土壤不同氮素形态的动态及利用[J]. 中国农业大学学报,2002,7(3):52-56.
[16]FENG Z, WU P, XIE X, et al. Feather-based compost drastically regulates soil microbial community and lettuce growth in a subtropical soil: the possible role of amino acids[J]. Journal of Soil Science and Plant Nutrition,2021,21(1):709-721.
[17]ZHU J, PENG H, JI X H, et al. Effects of reduced inorganic fertilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils[J]. European Journal of Soil Biology,2019,94:103116.
[18]KARIMI B, TERRAT S, DEQUIEDT S, et al. Biogeography of soil bacteria and archaea across France[J]. Science Advances,2018,4(7):1808.
[19]LEFF J W, JONES S E, PROBER S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(35):10967-10972.
[20]MIKULA K, KONIECZKA M, TAF R, et al. Tannery waste as a renewable source of nitrogen for production of multicomponent fertilizers with biostimulating properties[J]. Environmental Science and Pollution Research,2023,30(4):8759-8777.
[21]ZHIMO V Y, KUMAR A, BIASI A, et al. Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola, a yeast biocontrol agent[J]. Postharvest Biology and Technology,2021,175:111469.
[22]KUZMINA L Y, GILVANOVA E A, GALIMZYANOVA N F, et al. Characterization of the novel plant growth-stimulating strain Advenella kashmirensis IB-K1 and evaluation of its efficiency in saline soil[J]. Microbiology,2022,91(2):173-183.
[23]毛梦雪,朱峰. 根系分泌物介导植物抗逆性研究进展与展望[J]. 中国生态农业学报(中英文),2021,29(10):1649-1657.
[24]徐国伟,陆大克,王贺正,等. 施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响[J]. 中国生态农业学报,2018,26(4):516-525.
[25]BAKHSHANDEH E, PIRDASHTI H, LENDEH K S. Phosphate and potassium-solubilizing bacteria effect on the growth of rice[J]. Ecological Engineering,2017,103:164-169.
[26]QIN L, LI Z, LI B, et al. Organic acid excretion in root exudates as a mechanism of cadmium uptake in a Sonchus asper-Zea mays intercropping system[J]. Bulletin of Environmental Contamination and Toxicology,2021,107:1059-1064.
[27]TIZIANI R, MIRAS-MORENO B, MALACRIN A, et al. Drought, heat, and their combination impact the root exudation patterns and rhizosphere microbiome in maize roots[J]. Environmental and Experimental Botany,2022,203:105071.
[28]HE H, WU M, GUO L, et al. Release of tartrate as a major carboxylate by alfalfa (Medicago sativa L.) under phosphorus deficiency and the effect of soil nitrogen supply[J]. Plant and Soil,2020,449(1/2):169-178.
[29]LI Y, LI Y, YANG M, et al. Changes of microbial functional capacities in the rhizosphere contribute to aluminum tolerance by genotype-specific soybeans in acid soils[J]. Biology and Fertility of Soils,2020,56(6):771-783.
[30]TIAN B, PEI Y, HUANG W, et al. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant[J]. ISME Journal,2021,15(7):1919-1930.
[31]GLICK B R, GAMALARO E. Recent developments in the study of plant microbiomes[J]. Microorganisms,2021,9(7):1533.
[32]KOUR D, RANA K L, YADAV A N, et al. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability[J]. Biocatalysis and Agricultural Biotechnology,2020,23:101487.
[33]CHIANESE S, FENTI A, IOVINO P, et al. Sorption of organic pollutants by humic acids: a review[J]. Molecules,2020,25(4):918.
[34]KAWASAKI A, OKADA S, ZHANG C, et al. A sterile hydroponic system for characterising root exudates from specific root types and whole-root systems of large crop plants[J]. Plant Methods,2018,14:114.
[35]MAZZOLI R. Current progress in production of building-block organic acids by consolidated bioprocessing of lignocellulose[J]. Fermentation,2021,7(4):248.
[36]CHEN D, WANG X, ZHANG W, et al. Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community[J]. Plant and Soil,2020,452(1/2):313-328.
[37]LEBRUN M, MIARD F, BUCCI A, et al. The rhizosphere of Salix viminalis plants after a phytostabilization process assisted by biochar, compost, and iron grit: chemical and (micro)-biological analyses[J]. Environmental Science and Pollution Research,2021,28(34):47447-47462.
[38]SINDHU S S, SEHRAWAT A, GLICK B R. The involvement of organic acids in soil fertility, plant health and environment sustainability[J]. Archives of Microbiology,2022,204(12):720.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(09):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(09):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(09):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(09):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(09):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(09):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(09):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(09):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(09):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(09):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]